2 research outputs found

    Substantiation of Drilling Parameters for Undermined Drainage Boreholes for Increasing Methane Production from Unconventional Coal-Gas Collectors

    No full text
    Decarbonization of the mining industry on the basis of closing the energy generation, on the basis of cogeneration of coal mine methane, and on the internal consumption of the mine is a promising direction in ensuring sustainable development. Known problems of deep underground mining do not allow for realizing the potential of man-made gas reservoirs due to the deterioration of the conditions of development of reserves of georesources. The aim of the work was to improve recommendations for the substantiation of drilling parameters for undermined drainage boreholes for increasing methane production from unconventional coal-gas collectors. The authors’ approach innovation lies in the possibility of using the established patterns of better natural stability of undermined boreholes to optimize them as spatial orientation parameters in an existing drilling passport for the improvement of methane extraction productivity. For this purpose, smoothing (LOESS) of the experimental data of two similar types of wells was used; then deterministic interpolation methods in combination with a three-dimensional representation of the response function in “gnuplot” were used. As a result, it was found that the increase in the inclination angle from 40° to 60° leads to a significant transformation of the model of the studied process, accompanied by a decline in the dynamics of methane emission and a decrease in the distance of the productive work zone of this type of well from 13 to 5 m before the roof landing, which then is replaced by a sharp increase in the productive work zone up to 35 m ahead of the longwall face. This allows under specific conditions for recommending increasing the productivity of methane capex from technogenic disturbed coal-gas reservoir replacement of wells with a smaller angle of rise to the transition to a more frequent grid of clusters from wells #4

    Study of Supercapacitors Built in the Start-Up System of the Main Diesel Locomotive

    No full text
    A successful guaranteed launch of a mainline diesel locomotive is one of the most important and urgent problems of the rolling stock operation. Improvement of the start-up system of the main diesel locomotive when using a supercapacitor allows multiple restarts of diesel locomotives, meaning that the operation of the diesel locomotive can be stopped several times without wasting fuel in idle operations. In this study, we simulated the electric starting circuit of a diesel locomotive with a block of supercapacitors using the Matlab Simulink program. The simulation results show that using only a supercapacitor in the start-up system is impossible. Even though the supercapacitor produces the required current and voltage, its operating time is extremely insufficient. Using a storage battery along with a supercapacitor in the diesel locomotive start-up system is most effective. This reduces the peak current load on the standard battery. The article suggests an effective principle for starting a mainline diesel locomotive and provides an effective circuit solution involving a supercapacitor. Based on the booster stabilizer scheme, a new scheme was modeled to study the successful launch of a diesel locomotive that has various start-up systems. Applying a supercapacitor in the start-up system of a main diesel locomotive is proposed and the results of its use are presented. In addition, this study defines the basic requirements for using a system based on a battery in conjunction with a supercapacitor. Characteristics such as the temperature range of the system are shown
    corecore