3 research outputs found

    Extensive air showers with TeV-scale quantum gravity

    Get PDF
    One of the possible consequences of the existence of extra degrees of freedom beyond the electroweak scale is the increase of neutrino-nucleon cross sections (σνN\sigma_{\nu N}) beyond Standard Model predictions. At ultra-high energies this may allow the existence of neutrino-initiated extensive air showers. In this paper, we examine the most relevant observables of such showers. Our analysis indicates that the future Pierre Auger Observatory could be potentially powerful in probing models with large compact dimensions.Comment: 7 pages revtex, 5 eps fig

    Ultrahigh Energy Cosmic Rays: The state of the art before the Auger Observatory

    Full text link
    In this review we discuss the important progress made in recent years towards understanding the experimental data on cosmic rays with energies \agt 10^{19} eV. We begin with a brief survey of the available data, including a description of the energy spectrum, mass composition, and arrival directions. At this point we also give a short overview of experimental techniques. After that, we introduce the fundamentals of acceleration and propagation in order to discuss the conjectured nearby cosmic ray sources. We then turn to theoretical notions of physics beyond the Standard Model where we consider both exotic primaries and exotic physical laws. Particular attention is given to the role that TeV-scale gravity could play in addressing the origin of the highest energy cosmic rays. In the final part of the review we discuss the potential of future cosmic ray experiments for the discovery of tiny black holes that should be produced in the Earth's atmosphere if TeV-scale gravity is realized in Nature.Comment: Final version. To be published in Int. J. Mod. Phys.
    corecore