3 research outputs found
Solution structure of Arabidopsis thaliana protein At5g39720.1, a member of the AIG2-like protein family
The solution structure of A. thaliana protein At5g39720.1 reported here is the first for a member of the AIG2-like family (PF06094). The three-dimensional structure shows similarity to those determined for members of the uncharacterized Pfam family UPF0131
Solution structure of a single-domain thiosulfate sulfurtransferase from Arabidopsis thaliana
We describe the three-dimensional structure of the product of Arabidopsis thaliana gene At5g66040.1 as determined by NMR spectroscopy. This protein is categorized as single-domain sulfurtransferase and is annotated as a senescence-associated protein (sen1-like protein) and ketoconazole resistance protein (http://arabidopsis.org/info/genefamily/STR_genefamily.html). The sequence of At5g66040.1 is virtually identical to that of a protein from Arabidopsis found by others to confer ketoconazole resistance in yeast. Comparison of the three-dimensional structure with those in the Protein Data Bank revealed that At5g66040.1 contains an additional mobile β-hairpin not found in other rhodaneses that may function in binding specific substrates. This represents the first structure of a single-domain plant sulfurtransferase. The enzymatically active cysteine-containing domain belongs to the CDC25 class of phosphatases, sulfide dehydrogenases, and stress proteins such as senescence specific protein 1 in plants, PspE and GlpE in bacteria, and cyanide and arsenate resistance proteins. Versions of this domain that lack the active site cysteine are found in other proteins, such as phosphatases, ubiquitin hydrolases, and sulfuryltransferases