2,245 research outputs found

    High-pressure x-ray diffraction study of bulk and nanocrystalline PbMoO4

    Full text link
    We studied the effects of high-pressure on the crystalline structure of bulk and nanocrystalline scheelite-type PbMoO4. We found that in both cases the compressibility of the materials is highly non-isotropic, being the c-axis the most compressible one. We also observed that the volume compressibility of nanocrystals becomes higher that the bulk one at 5 GPa. In addition, at 10.7(8) GPa we observed the onset of an structural phase transition in bulk PbMoO4. The high-pressure phase has a monoclinic structure similar to M-fergusonite. The transition is reversible and not volume change is detected between the low- and high-pressure phases. No additional structural changes or evidence of decomposition are found up to 21.1 GPa. In contrast nanocrystalline PbMoO4 remains in the scheelite structure at least up to 16.1 GPa. Finally, the equation of state for bulk and nanocrystalline PbMoO4 are also determined.Comment: 18 pages, 4 figure

    Repertoire of Protein Kinases Encoded in the Genome of Takifugu rubripes

    Get PDF
    Takifugu rubripes is teleost fish widely used in comparative genomics to understand the human system better due to its similarities both in number of genes and structure of genes. In this work we survey the fugu genome, and, using sensitive computational approaches, we identify the repertoire of putative protein kinases and classify them into groups and subfamilies. The fugu genome encodes 519 protein kinase-like sequences and this number of putative protein kinases is comparable closely to that of human. However, in spite of its similarities to human kinases at the group level, there are differences at the subfamily level as noted in the case of KIS and DYRK subfamilies which contribute to differences which are specific to the adaptation of the organism. Also, certain unique domain combination of galectin domain and YkA domain suggests alternate mechanisms for immune response and binding to lipoproteins. Lastly, an overall similarity with the MAPK pathway of humans suggests its importance to understand signaling mechanisms in humans. Overall the fugu serves as a good model organism to understand roles of human kinases as far as kinases such as LRRK and IRAK and their associated pathways are concerned

    Study of dimensionless quantities to analyse front and rear wall of keyhole formed during laser beam welding

    Get PDF
    Fluid flow mechanisms present in Keyhole (KH) during Laser Beam Welding (LBW) process influence the associated heat and mass transfer. In an attempt to describe these complexities for eventual optimization of LBW parameters, a dimensionless analysis using Mach (Ma), Raleigh (Ra), Reynolds (Re) and Marangoni (Mg) numbers have been carried out. This analysis describes hydrodynamics of melt and vapour phase appearing in the front and rear wall of KH. The non-dimensional hydrodynamic quantities describe the mechanism behind flow pattern present in melt-vapour in terms of ratio of convection–conduction heat transfer occurring within KH. The analysis shows that the higher Marangoni number indicates stronger Marangoni convection in the KH causing relatively higher capillary flow in the melt pool. The laminar-turbulent flow of melt-vapour in KH medium is described in terms of ratio of Reynolds and Mach numbers (Re/Ma). The pressure distribution in the KH accounts for the melt-vapour ejection rate. A relationship between depth and radius of KH has been obtained as a function of delivered laser power

    Effect of l-proline and l-tryptophan on somatic embryogenesis and plantlet regeneration of rice (Oryza sativa L. cv. Pusa 169)

    Get PDF
    This article does not have an abstract

    Dynamics of plasma expansion in the pulsed laser material interaction

    Get PDF
    A pulse Nd: YAG laser with pulse duration 5-10 ns, beam radius at focal point 0.2-0.4 mm, wavelengths 1064 nm, 532 nm and 238 nm with linearly polarized radiation and Gaussian beam profile, was impacted on a thin foil of titanium metal for generating plasma plume. Numerically, the above parameters were linked with average kinetic energy of the electrons and ions in the laser-induced plasma. In the present model, electrons having higher velocities are assumed to escape from plasma, that forms a negatively charged sheath around the plasma. It is seen from present computations that the forward directed nature of the laser evaporation process results from the anisotropic expansion velocities associated with different species. These velocities are mainly controlled by the initial dimension of the expanding plasma. An attempt was undertaken to estimate the length of the plume at different ambient gas pressures using an adiabatic expansion model. The rate of the plasma expansion for various Ar ion energies was derived from numerical calculations. A numerical definition of this plasma includes events like collisional/radiative, excitation/de-excitation and ionization/recombination processes involving multiples of energy levels with several ionization stages. Finally, based on a kinetic model, the plasma expansion rate across the laser beam axis was investigated

    Thermal dynamics-based mechanism for intense laser-induced material surface vaporization

    Get PDF
    Laser material processing involving welding, ablation and cutting involves interaction of intense laser pulses of nanosecond duration with a condensed phase. Such interaction involving high brightness radiative flux causes multitude of non-linear events involving thermal phase transition at soild-liquid-gas interfaces. A theoretical perspective involving thermal dynamics of the vaporization process and consequent non-linear multiple thermal phase transitions under the action of laser plasma is the subject matter of the present work. The computational calculations were carried out where titanium (Ti) was treated as a condensed medium. The solution to the partial differential equations governing the thermal dynamics and the underlying phase transition event in the multiphase system is based on non-stationary Eulerian variables. The Mach number M depicts significant fluctuations due to thermal instabilities associated with the laser beam flux and intensity. A conclusive amalgamation has been established which relates material surface temperature profile to laser intensity, laser flux and the pressure in the plasma cloud

    Melt pool vorticity in deep penetration laser material welding

    Get PDF
    In the present study, the vorticity of melt motion in the keyhole and weld pool has been evaluated in case of high power CO2 laser beam welding. The circulation of vorticity is obtained as a function of Reynolds number for a given keyhole volume which is linked to Mach number variation. The shear stress and thermal fluxes present in the turbulent pool are linked to diffusivity and Prandtl number variation. It was shown that below a critical value of Rayleigh number, the conduction mode of melt transfer signifying beam absorption becomes dominant. Above this value, convective heat transfer indicates melting and evaporation occurring in the weld pool during laser welding. The evaporative recoil pressure expels the liquid while surface tension and hydrostatic pressure help to retain the melt in the keyhole cavity in this high power laser beam welding. The understanding of several hydrodynamic phenomena occuring in the weld pool is valuable not only for understanding basic mechanistic aspects but also for process optimization involved in laser beam welding
    corecore