2,192 research outputs found

    Spatial Correlation of Low Latitude Electron Content for Solar Minimum

    Get PDF

    Acetyl salicylic acid augments functional recovery following sciatic nerve crush in mice

    Get PDF
    Cyclin-dependent kinase 5 (CDK-5) appears to play a significant role in peripheral nerve regeneration as CDK-5 inhibition retards nerve regeneration following nerve crush. Anti-inflammatory drug acetyl salicylic acid elevates CDK-5 and reduces ischemia – reperfusion injury in cultured neurons. In this study we have evaluated the effect of acetyl salicylic acid on functional recovery following sciatic nerve crush in mice. Eighteen Swiss albino mice underwent unilateral sciatic nerve crush. Test animals received acetyl salicylic acid (100 mg/kg/day, n = 6 or 50 mg/kg/day, n = 6) and control animals (n = 6) received normal saline for 14 days following surgery. Functional recovery was assessed with improvement in Sciatic Function Index, nociception and gait. In comparison with normal saline treatment, acetyl salicylic acid (100 mg/kg/day) significantly improved functional recovery following sciatic nerve crush. Anti-inflammatory drug acetyl salicylic acid appears to be a promising agent for treating peripheral nerve injuries and hence elucidation of its neuroprotective pathways is necessary

    Practical long-distance quantum key distribution system using decoy levels

    Get PDF
    Quantum key distribution (QKD) has the potential for widespread real-world applications. To date no secure long-distance experiment has demonstrated the truly practical operation needed to move QKD from the laboratory to the real world due largely to limitations in synchronization and poor detector performance. Here we report results obtained using a fully automated, robust QKD system based on the Bennett Brassard 1984 protocol (BB84) with low-noise superconducting nanowire single-photon detectors (SNSPDs) and decoy levels. Secret key is produced with unconditional security over a record 144.3 km of optical fibre, an increase of more than a factor of five compared to the previous record for unconditionally secure key generation in a practical QKD system.Comment: 9 page

    Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10.

    Get PDF
    Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD) leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α) and attenuation of anti-inflammatory cytokine such as interleukin 10 (IL-10) contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, 8 week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1 h/day for 5 days/week for 8 weeks). The four treatment groups: normal diet (ND), HFD, HFD + exercise (HFD + Ex) and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice

    Effect of evaporation time on the pervaporation characteristics through homogeneous aromatic polyamide membranes. II. Pervaporation performances for ethanol/water mixture

    Get PDF
    Pervaporation of ethanol/water mixtures through symmetric dense aromatic polyamide membranes was investigated. The membrane structure was controlled by varying the solvent evaporation time before gelation. The membranes were water-selective and the selectivity increased with an increase in the solvent evaporation time. On the other hand, the water flux as well as the ethanol flux decreased with an increase in the evaporation time. These results were consistent with the morphology change of the membrane which takes place with solvent evaporation: the decrease in the channel size. The effects of the downstream pressure on the pervaporation performances were also studied for membranes with different solvent evaporation times. the ethanol concentration in the permeate side increased with an increase in the downstream pressure to certain point, showed a maximum there, then decreased thereafter. The water flux decreased with an increase in the downstream pressure for all membranes studied; the dependence was expressed by a parabolic curve in the lower pressure range. The ethanol flux also decreased with an increase in the downstream pressure for the membrane with shorter evaporation time, while this flux was slightly affected by the downstream pressure for the membrane with longer evaporation time.Peer reviewed: YesNRC publication: Ye

    Aquaporin-like water transport in nanoporous crystalline layered carbon nitride

    Get PDF
    Designing next-generation fuel cell and filtration devices requires the development of nanoporous materials that allow rapid and reversible uptake and directed transport of water molecules. Here, we combine neutron spectroscopy and first-principles calculations to demonstrate rapid transport of molecular H2O through nanometer-sized voids ordered within the layers of crystalline carbon nitride with a polytriazine imide structure. The transport mechanism involves a sequence of molecular orientation reversals directed by hydrogen-bonding interactions as the neutral molecules traverse the interlayer gap and pass through the intralayer voids that show similarities with the transport of water through transmembrane aquaporin channels in biological systems. The results suggest that nanoporous layered carbon nitrides can be useful for developing high-performance membranes

    A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea

    Get PDF
    High experimental validation/genotyping success rate (94–96%) and intra-specific polymorphic potential (82–96%) of 1536 SNP and 472 SSR markers showing in silico polymorphism between desi ICC 4958 and kabuli ICC 12968 chickpea was obtained in a 190 mapping population (ICC 4958 × ICC 12968) and 92 diverse desi and kabuli genotypes. A high-density 2001 marker-based intra-specific genetic linkage map comprising of eight LGs constructed is comparatively much saturated (mean map-density: 0.94 cM) in contrast to existing intra-specific genetic maps in chickpea. Fifteen robust QTLs (PVE: 8.8–25.8% with LOD: 7.0–13.8) associated with pod and seed number/plant (PN and SN) and 100 seed weight (SW) were identified and mapped on 10 major genomic regions of eight LGs. One of 126.8 kb major genomic region harbouring a strong SW-associated robust QTL (Caq'SW1.1: 169.1–171.3 cM) has been delineated by integrating high-resolution QTL mapping with comprehensive marker-based comparative genome mapping and differential expression profiling. This identified one potential regulatory SNP (G/A) in the cis-acting element of candidate ERF (ethylene responsive factor) TF (transcription factor) gene governing seed weight in chickpea. The functionally relevant molecular tags identified have potential to be utilized for marker-assisted genetic improvement of chickpea

    Particle size dependence of magnetization and phase transition near T_N in multiferroic BiFeO3

    Full text link
    We report results of a comprehensive study of the phase transition at T_N (~643 K) as a function of particle size in multiferroic BiFeO3 system. We employed electrical, thermal, and temperature dependent X-ray diffraction (XRD) studies in order to characterize the transition in a host of samples. We also carried out detailed magnetic measurements over a temperature regime 2-300 K under a magnetic field 100-10000 Oe both on bulk and nano-crystalline systems. While in the bulk system a sharp endothermic peak at T_N together with a broad feature, ranging over nearly ~150 K (Delta_T), could be observed in calorimetry, the nanoscale systems exhibit only the broad feature. The characteristic dielectric anomaly, expected at T_N, is found to occur both at T_O and T_N across Delta_T in the bulk sample. The Maxwell-Wagner component due to interfaces between heterogenous regions with different conductivities is also present. The magnetic properties, measured at lower temperature, corroborate our observations in calorimetry. The metastability increases in the nanoscale BiFeO3 with divergence between zero-field cooled (ZFC) and field cooled (FC) magnetization below ~100 K and faster magnetic relaxation. Interestingly, in nanoscale BiFeO3, one also observes finite coercivity at lower temperature which points out that suitable design of particle size and shape may induce ferromagnetism. The inhomogeneous distribution of Bi/Fe-ions and/or oxygen non-stoichiometry seems to be giving rise to broad features in thermal, magnetic as well as in electrical responses.Comment: 22 pages including 9 figures, pdf only, submitted to J. Appl. Phy
    corecore