5 research outputs found

    Mental Health in the UK Biobank: A Roadmap to Self-Report Measures and Neuroimaging Correlates

    Get PDF
    The UK Biobank (UKB) is a highly promising dataset for brain biomarker research into population mental health due to its unprecedented sample size and extensive phenotypic, imaging, and biological measurements. In this study, we aimed to provide a shared foundation for UKB neuroimaging research into mental health with a focus on anxiety and depression. We compared UKB self-report measures and revealed important timing effects between scan acquisition and separate online acquisition of some mental health measures. To overcome these timing effects, we introduced and validated the Recent Depressive Symptoms (RDS-4) score which we recommend for state-dependent and longitudinal research in the UKB. We furthermore tested univariate and multivariate associations between brain imaging-derived phenotypes (IDPs) and mental health. Our results showed a significant multivariate relationship between IDPs and mental health, which was replicable. Conversely, effect sizes for individual IDPs were small. Test–retest reliability of IDPs was stronger for measures of brain structure than for measures of brain function. Taken together, these results provide benchmarks and guidelines for future UKB research into brain biomarkers of mental health

    Pharmacokinetic Analysis of Enhancement-Constrained Acceleration (ECA) reconstruction-based high temporal resolution breast DCE-MRI.

    Get PDF
    The high spatial and temporal resolution of dynamic contrast-enhanced MRI (DCE-MRI) can improve the diagnostic accuracy of breast cancer screening in patients who have dense breasts or are at high risk of breast cancer. However, the spatiotemporal resolution of DCE-MRI is limited by technical issues in clinical practice. Our earlier work demonstrated the use of image reconstruction with enhancement-constrained acceleration (ECA) to increase temporal resolution. ECA exploits the correlation in k-space between successive image acquisitions. Because of this correlation, and due to the very sparse enhancement at early times after contrast media injection, we can reconstruct images from highly under-sampled k-space data. Our previous results showed that ECA reconstruction at 0.25 seconds per image (4 Hz) can estimate bolus arrival time (BAT) and initial enhancement slope (iSlope) more accurately than a standard inverse fast Fourier transform (IFFT) when k-space data is sampled following a Cartesian based sampling trajectory with adequate signal-to-noise ratio (SNR). In this follow-up study, we investigated the effect of different Cartesian based sampling trajectories, SNRs and acceleration rates on the performance of ECA reconstruction in estimating contrast media kinetics in lesions (BAT, iSlope and Ktrans) and in arteries (Peak signal intensity of first pass, time to peak, and BAT). We further validated ECA reconstruction with a flow phantom experiment. Our results show that ECA reconstruction of k-space data acquired with 'Under-sampling with Repeated Advancing Phase' (UnWRAP) trajectories with an acceleration factor of 14, and temporal resolution of 0.5 s/image and high SNR (SNR ≥ 30 dB, noise standard deviation (std) < 3%) ensures minor errors (5% or 1 s error) in lesion kinetics. Medium SNR (SNR ≥ 20 dB, noise std ≤ 10%) was needed to accurately measure arterial enhancement kinetics. Our results also suggest that accelerated temporal resolution with ECA with 0.5 s/image is practical

    Enhancement-constrained acceleration: A robust reconstruction framework in breast DCE-MRI.

    Full text link
    In patients with dense breasts or at high risk of breast cancer, dynamic contrast enhanced MRI (DCE-MRI) is a highly sensitive diagnostic tool. However, its specificity is highly variable and sometimes low; quantitative measurements of contrast uptake parameters may improve specificity and mitigate this issue. To improve diagnostic accuracy, data need to be captured at high spatial and temporal resolution. While many methods exist to accelerate MRI temporal resolution, not all are optimized to capture breast DCE-MRI dynamics. We propose a novel, flexible, and powerful framework for the reconstruction of highly-undersampled DCE-MRI data: enhancement-constrained acceleration (ECA). Enhancement-constrained acceleration uses an assumption of smooth enhancement at small time-scale to estimate points of smooth enhancement curves in small time intervals at each voxel. This method is tested in silico with physiologically realistic virtual phantoms, simulating state-of-the-art ultrafast acquisitions at 3.5s temporal resolution reconstructed at 0.25s temporal resolution (demo code available here). Virtual phantoms were developed from real patient data and parametrized in continuous time with arterial input function (AIF) models and lesion enhancement functions. Enhancement-constrained acceleration was compared to standard ultrafast reconstruction in estimating the bolus arrival time and initial slope of enhancement from reconstructed images. We found that the ECA method reconstructed images at 0.25s temporal resolution with no significant loss in image fidelity, a 4x reduction in the error of bolus arrival time estimation in lesions (p < 0.01) and 11x error reduction in blood vessels (p < 0.01). Our results suggest that ECA is a powerful and versatile tool for breast DCE-MRI
    corecore