41 research outputs found
Analogues of the central point theorem for families with -intersection property in
In this paper we consider families of compact convex sets in
such that any subfamily of size at most has a nonempty intersection. We
prove some analogues of the central point theorem and Tverberg's theorem for
such families
Notes about the Caratheodory number
In this paper we give sufficient conditions for a compactum in
to have Carath\'{e}odory number less than , generalizing an old result of
Fenchel. Then we prove the corresponding versions of the colorful
Carath\'{e}odory theorem and give a Tverberg type theorem for families of
convex compacta
Some functional equations related to the characterizations of information measures and their stability
The main purpose of this paper is to investigate the stability problem of
some functional equations that appear in the characterization problem of
information measures.Comment: 36 pages. arXiv admin note: text overlap with arXiv:1307.0657,
arXiv:1307.0631, arXiv:1307.0664, arXiv:1307.065
Bounding Helly numbers via Betti numbers
We show that very weak topological assumptions are enough to ensure the
existence of a Helly-type theorem. More precisely, we show that for any
non-negative integers and there exists an integer such that
the following holds. If is a finite family of subsets of such that for any
and every
then has Helly number at most . Here
denotes the reduced -Betti numbers (with singular homology). These
topological conditions are sharp: not controlling any of these first Betti numbers allow for families with unbounded Helly number.
Our proofs combine homological non-embeddability results with a Ramsey-based
approach to build, given an arbitrary simplicial complex , some well-behaved
chain map .Comment: 29 pages, 8 figure