41 research outputs found

    Analogues of the central point theorem for families with dd-intersection property in Rd\mathbb R^d

    Full text link
    In this paper we consider families of compact convex sets in Rd\mathbb R^d such that any subfamily of size at most dd has a nonempty intersection. We prove some analogues of the central point theorem and Tverberg's theorem for such families

    Notes about the Caratheodory number

    Full text link
    In this paper we give sufficient conditions for a compactum in Rn\mathbb R^n to have Carath\'{e}odory number less than n+1n+1, generalizing an old result of Fenchel. Then we prove the corresponding versions of the colorful Carath\'{e}odory theorem and give a Tverberg type theorem for families of convex compacta

    Some functional equations related to the characterizations of information measures and their stability

    Full text link
    The main purpose of this paper is to investigate the stability problem of some functional equations that appear in the characterization problem of information measures.Comment: 36 pages. arXiv admin note: text overlap with arXiv:1307.0657, arXiv:1307.0631, arXiv:1307.0664, arXiv:1307.065

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(G)b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any GF\mathcal G \subsetneq \mathcal F and every 0id/210 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these d/2\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C(K)C(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure
    corecore