3,305 research outputs found
Apparatus Measures Thermal Conductance Through a Thin Sample from Cryogenic to Room Temperature
An apparatus allows the measurement of the thermal conductance across a thin sample clamped between metal plates, including thermal boundary resistances. It allows in-situ variation of the clamping force from zero to 30 lb (133.4 N), and variation of the sample temperature between 40 and 300 K. It has a special design feature that minimizes the effect of thermal radiation on this measurement. The apparatus includes a heater plate sandwiched between two identical thin samples. On the side of each sample opposite the heater plate is a cold plate. In order to take data, the heater plate is controlled at a slightly higher temperature than the two cold plates, which are controlled at a single lower temperature. The steady-state controlling power supplied to the hot plate, the area and thickness of samples, and the temperature drop across the samples are then used in a simple calculation of the thermal conductance. The conductance measurements can be taken at arbitrary temperatures down to about 40 K, as the entire setup is cooled by a mechanical cryocooler. The specific geometry combined with the pneumatic clamping force control system and the steady-state temperature control approach make this a unique apparatus
Rapid method for determination of antimicrobial susceptibilities pattern of urinary bacteria
Method determines bacterial sensitivity to antimicrobial agents by measuring level of adenosine triphosphate remaining in the bacteria. Light emitted during reaction of sample with a mixture of luciferase and luciferin is measured
Problem areas in the use of the firefly luciferase assay for bacterial detection
By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples
Bonded Invar Clip Removal Using Foil Heaters
A new process uses local heating and temperature monitoring to soften the adhesive under Invar clips enough that they can be removed without damaging the composite underneath or other nearby bonds. Two 1x1 in. (approx.2.5x2.5 cm), 10-W/sq in. (approx.1.6-W/sq cm), 80-ohm resistive foil Kapton foil heaters, with pressure-sensitive acrylic adhesive backing, are wired in parallel to a 50-V, 1-A limited power supply. At 1 A, 40 W are applied to the heater pair. The temperature is monitored in the clip radius and inside the tube, using a dual thermocouple readout. Several layers of aluminum foil are used to speed the heat up, allowing clips to be removed in less than five minutes. The very local heating via the foil heaters allows good access for clip removal and protects all underlying and adjacent materials
Thermal Conductivity and Specific Heat Measurements of Candidate Structural Materials for the JWST Optical Bench
The James Webb Space Telescope will include an optical bench known as the integrated science instrument module (ISIM). Candidate structural materials for the ISIM must have low density, high stiffness, high thermal conductivity, and low thermal expansion coefficient at the operating temperature of 30 Kelvin. The specific heat is also important in modeling the on-orbit cooldown. We built two different systems for measuring the thermal conductivity and specific heat of samples between 4 Kelvin and 290 Kelvin. Both experiments were carefully designed to minimize potential errors due to radiative heat transfer. We chose the cooling system and instrumentation to allow long-term unattended operation. Software was developed to automate each experiment. It used an algorithm designed to ensure that each system was in thermal equilibrium before a measurement was taken. We describe the two experiments and present the data
Development of a 50 mK - 10 K Flight-Worthy Vibration-Free Continuous Adiabatic Demagnetization Refrigerator
The cryogenics and fluids branch at NASA Goddard Space Flight Center is currently developing a flight-worthy vibration-free 50 mK to 10 K Continous Adiabatic Demagnetization Refrigerator (CADR) that will potentially serve as the cooling scheme for future space flight missions such as OST, LUVOIR, and other flagship missions. This 7 stage CADR will lift 6 microW of heat at its lowest stage and reject heat to a temperature platform at 10 K. A single stage 4 - 10 K flight-worthy ADR unit was recently demonstrated with an optimized cycle time of 132 seconds and a heat lift of ~13 mW at 4 K. We discuss the development progress and details of its desing in this presentation
Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing
The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation
Application of luciferase assay for ATP to antimicrobial drug susceptibility
The susceptibility of bacteria, particularly those derived from body fluids, to antimicrobial agents is determined in terms of an ATP index measured by culturing a bacterium in a growth medium. The amount of ATP is assayed in a sample of the cultured bacterium by measuring the amount of luminescent light emitted when the bacterial ATP is reacted with a luciferase-luciferin mixture. The sample of the cultured bacterium is subjected to an antibiotic agent. The amount of bacterial adenosine triphosphate is assayed after treatment with the antibiotic by measuring the luminescent light resulting from the reaction. The ATP index is determined from the values obtained from the assay procedures
Assignment of the vibrations of the S0, S1, and D+0 states of perhydrogenated and perdeuterated isotopologues of chlorobenzene
We report vibrationally resolved spectra of the S1 ← S0 transition of chlorobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study chlorobenzene-h5 as well as its perdeuterated isotopologue, chlorobenzene-d5. Changes in the form of the vibrational modes between the isotopologues and also between the S0 and S1 electronic states are discussed for each species. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts, including those between the 35Cl and 37Cl isotopologues. Previous work and assignments of the S1 spectra are discussed. Additionally, the vibrations in the ground state cation, D+0, are considered, since these have also been used by previous workers in assigning the excited neutral state spectra
- …
