3,978 research outputs found

    Radiative Decay of Vector Quarkonium: Constraints on Glueballs and Light Gluinos

    Full text link
    Given a resonance of known mass, width, and J^{PC}, we can determine its gluonic branching fraction, b(R->gg), from data on its production in radiative vector quarkonium decay, V -> gamma+R. For most resonances b(R->gg) is found to be O(10%), consistent with being q-qbar states, but we find that both pseudoscalars observed in the 1440 MeV region have b(R->gg) ~ 1/2 - 1, and b(f_0^{++}->gg) ~ 1/2. As data improves, b(R->gg) should be a useful discriminator between q-qbar and gluonic states and may permit quantitative determination of the extent to which a particular resonance is a mixture of glueball and q-qbar. We also examine the regime of validity of pQCD for predicting the rate of V -> gamma+eta_gluino, the ``extra'' pseudoscalar bound state which would exist if there were light gluinos. From the CUSB limit on peaks in Upsilon -> gamma X, the mass range 3 GeV < m(eta_gluino) < 7 GeV can be excluded. An experiment must be significantly more sensitive to exclude an eta_gluino lighter than this.Comment: 36pp (inc figs),RU-94-04. (Replaces original which didn't latex correctly and didn't have figures.

    Experiments to Find or Exclude a Long-Lived, Light Gluino

    Get PDF
    Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter gluinos are allowed, except for certain ranges of lifetime. Only small parts of the mass-lifetime parameter space are excluded for larger masses unless the lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and lifetime estimates for R-hadrons are given, present direct and indirect experimental constraints are reviewed, and experiments to find or definitively exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies discussion of some points and corresponds to version for Phys. Rev.

    Higher Twist Contributions To R-Hadron Phenomenology In The Light Gluino Scenario

    Get PDF
    The open light gluino window allows non-trivial higher twist gluino contributions to the proton wave function. Using a two-component model originally developed for charm hadroproduction, higher twist intrinsic gluino contributions to final state R-hadron formation are shown to enhance leading twist production in the forward xFx_{F} region. We calculate R-hadron production at plab=800p_{\rm{lab}}=800 GeV in pp, pBe, and pCu interactions with light gluino masses of 1.2, 1.5, 3.5, and 5.0 GeV.Comment: 22 pages, 10 figures, revte

    Light Neutralinos in B-Decays

    Full text link
    We consider the decays of a BsB_s-meson into a pair of lightest supersymmetric particles (LSP) in the minimal supersymmetric standard model. It is found that the parameter space for light LSP's in the range of 1 GeV can be appreciably constrained by looking for such decays.Comment: 9 pages, LaTex, 2 figures (hard copies of the figures available from the Authors on request

    Closing the Light Gluino Window in Supersymmetric Grand Unified Models

    Full text link
    We study the light gluino scenario giving special attention to constraints from the masses of the light CP-even neutral Higgs mhm_h, the lightest chargino mχ1±m_{\chi^{\pm}_1}, and the second lightest neutralino mχ20m_{\chi^0_2}, and from the bsγb\rightarrow s\gamma decay. We find that minimal N=1N=1 supergravity, with a radiatively broken electroweak symmetry group and universality of scalar and gaugino masses at the unification scale, is incompatible with the existence of a light gluino.Comment: 12 pages (plain tex), 1 figure not included, VAND-TH-94-7-R. An error is corrected. Modifications to the text and the figure are mad

    The Multi-Modal Evaluation of Sensory Sensitivity (MESSY): Assessing a commonly missed symptom of acquired brain injury

    Get PDF
    Objective: Sensory hypersensitivity is common after acquired brain injury. Since appropriate diagnostic tools are lacking, these complaints are overlooked by clinicians and available literature is limited to light and noise hypersensitivity after concussion. This study aimed to investigate the prevalence of sensory hypersensitivity in other modalities and after other types of brain injury. Method: We developed the Multi-Modal Evaluation of Sensory Sensitivity (MESSY), a patient-friendly questionnaire that assesses sensory sensitivity across multiple sensory modalities. 818 neurotypical adults (mean age = 49; 244 male) and 341 chronic acquired brain injury patients (including stroke, traumatic brain injury, and brain tumour patients) (mean age = 56; 126 male) completed the MESSY online. Results: The MESSY had a high validity and reliability in neurotypical adults. Post-injury sensory hypersensitivity (examined using open-ended questions) was reported by 76% of the stroke patients, 89% of the traumatic brain injury patients, and 82% of the brain tumour patients. These complaints occurred across all modalities with multisensory, visual, and auditory hypersensitivity being the most prevalent. Patients with post-injury sensory hypersensitivity reported a higher sensory sensitivity severity on the multiple-choice items of the MESSY as compared to neurotypical adults and acquired brain injury patients without post-injury sensory hypersensitivity (across all sensory modalities) (effect sizes (partial eta squared) ranged from.06 to.22). Conclusions: These results show that sensory hypersensitivity is prevalent after different types of acquired brain injury as well as across several sensory modalities. The MESSY can improve recognition of these symptoms and facilitate further research

    Search for bottom squarks in pbarp collisions at sqrt(s)=1.8 TeV

    Full text link
    We report on a search for bottom squarks produced in pbarp collisions at sqrt(s) = 1.8 TeV using the D0 detector at Fermilab. Bottom squarks are assumed to be produced in pairs and to decay to the lightest supersymmetric particle (LSP) and a b quark with branching fraction of 100%. The LSP is assumed to be the lightest neutralino and stable. We set limits on the production cross section as a function of bottom squark mass and LSP mass.Comment: 5 pages, Latex. submitted 3-12-1999 to PRD - Rapid Communicatio

    A Quasi-Model-Independent Search for New Physics at Large Transverse Momentum

    Get PDF
    We apply a quasi-model-independent strategy ("Sleuth") to search for new high p_T physics in approximately 100 pb^-1 of ppbar collisions at sqrt(s) = 1.8 TeV collected by the DZero experiment during 1992-1996 at the Fermilab Tevatron. Over thirty-two e mu X, W+jets-like, Z+jets-like, and 3(lepton/photon)X exclusive final states are systematically analyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predicting new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in each set of final states. No evidence of new high p_T physics is observed in the course of this search, and we find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with a candidate signal more interesting than the most interesting observed in these data.Comment: 28 pages, 17 figures. Submitted to Physical Review

    Search for R-parity Violating Supersymmetry in Dimuon and Four-Jets Channel

    Get PDF
    We present results of a search for R-parity-violating decay of the neutralino chi_1^0, taken to be the Lightest Supersymmetric Particle. It is assumed that this decay proceeds through one of the lepton-number violating couplings lambda-prime_2jk (j=1,2; k=1,2,3). This search is based on 77.5 pb-1 of data, collected by the D0 experiment at the Fermilab Tevatron in ppbar collisions at a center of mass energy of 1.8 TeV in 1992-1995.Comment: 10 pages, 3 figure

    Differential Production Cross Section of Z Bosons as a Function of Transverse Momentum at sqrt{s}=1.8 TeV

    Get PDF
    We present a measurement of the transverse momentum distribution of Z bosons produced in ppbar collisions at sqrt{s}=1.8 TeV using data collected by the D0 experiment at the Fermilab Tevatron Collider during 1994--1996. We find good agreement between our data and a current resummation calculation. We also use our data to extract values of the non-perturbative parameters for a particular version of the resummation formalism, obtaining significantly more precise values than previous determinations.Comment: 10 pages, 2 figures, submitted to Phys. Rev. Letters v2 has margin error correcte
    corecore