7 research outputs found

    Differential stabilization of adenine quartets by anions and cations

    Get PDF
    We have investigated the structures and stabilities of four different adenine quartets with alkali and halide ions in the gas phase and in water, using dispersion-corrected density functional theory at the BLYP-D/TZ2P level. First, we examine the empty quartets and how they interact with alkali cations and halide anions with formation of adenine quartet–ion complexes. Second, we examine the interaction in a stack, in which a planar adenine quartet interacts with a cation or anion in the periphery as well as in the center of the quartet. Interestingly, for the latter situation, we find that both cations and anions can stabilize a planar adenine quartet in a stack

    π-π stacking tackled with density functional theory

    Get PDF
    Through comparison with ab initio reference data, we have evaluated the performance of various density functionals for describing π-π interactions as a function of the geometry between two stacked benzenes or benzene analogs, between two stacked DNA bases, and between two stacked Watson–Crick pairs. Our main purpose is to find a robust and computationally efficient density functional to be used specifically and only for describing π-π stacking interactions in DNA and other biological molecules in the framework of our recently developed QM/QM approach "QUILD". In line with previous studies, most standard density functionals recover, at best, only part of the favorable stacking interactions. An exception is the new KT1 functional, which correctly yields bound π-stacked structures. Surprisingly, a similarly good performance is achieved with the computationally very robust and efficient local density approximation (LDA). Furthermore, we show that classical electrostatic interactions determine the shape and depth of the π-π stacking potential energy surface
    corecore