52 research outputs found

    Energy versus information based estimations of dissipation using a pair of magnetic colloidal particles

    Get PDF
    Using the framework of stochastic thermodynamics, we present an experimental study of a doublet of magnetic colloidal particles which is manipulated by a time-dependent magnetic field. Due to hydrodynamic interactions, each bead experiences a state-dependent friction, which we characterize using a hydrodynamic model. In this work, we compare two estimates of the dissipation in this system: the first one is energy based since it relies on the measured interaction potential, while the second one is information based since it uses only the information content of the trajectories. While the latter only offers a lower bound of the former, we find it to be simple to implement and of general applicability to more complex systems.Comment: Main text: 5 pages, 4 figures. Supplementary material: 5 pages, 5 figure

    Electronic and magnetic properties of metallic phases under coexisting short-range interaction and diagonal disorder

    Full text link
    We study a three-dimensional Anderson-Hubbard model under the coexistence of short-range interaction and diagonal disorder within the Hartree-Fock approximation. We show that the density of states at the Fermi energy is suppressed in the metallic phases near the metal-insulator transition as a proximity effect of the soft Hubbard gap in the insulating phases. The transition to the insulator is characterized by a vanishing DOS in contrast to formation of a quasiparticle peak at the Fermi energy obtained by the dynamical mean field theory in pure systems. Furthermore, we show that there exist frozen spin moments in the paramagnetic metal.Comment: 4 pages, 2 figures, published versio

    The absence of finite-temperature phase transitions in low-dimensional many-body models: a survey and new results

    Full text link
    After a brief discussion of the Bogoliubov inequality and possible generalizations thereof, we present a complete review of results concerning the Mermin-Wagner theorem for various many-body systems, geometries and order parameters. We extend the method to cover magnetic phase transitions in the periodic Anderson Model as well as certain superconducting pairing mechanisms for Hubbard films. The relevance of the Mermin-Wagner theorem to approximations in many-body physics is discussed on a conceptual level.Comment: 33 pages; accepted for publication as a Topical Review in Journal of Physics: Condensed Matte

    Magnetic Correlations in the Two Dimensional Anderson-Hubbard Model

    Full text link
    The two dimensional Hubbard model in the presence of diagonal and off-diagonal disorder is studied at half filling with a finite temperature quantum Monte Carlo method. Magnetic correlations as well as the electronic compressibility are calculated to determine the behavior of local magnetic moments, the stability of antiferromagnetic long range order (AFLRO), and properties of the disordered phase. The existence of random potentials (diagonal or ``site'' disorder) leads to a suppression of local magnetic moments which eventually destroys AFLRO. Randomness in the hopping elements (off-diagonal disorder), on the other hand, does not significantly reduce the density of local magnetic moments. For this type of disorder, at half-filling, there is no ``sign-problem'' in the simulations as long as the hopping is restricted between neighbor sites on a bipartite lattice. This allows the study of sufficiently large lattices and low temperatures to perform a finite-size scaling analysis. For off-diagonal disorder AFLRO is eventually destroyed when the fluctuations of antiferromagnetic exchange couplings exceed a critical value. The disordered phase close to the transition appears to be incompressible and shows an increase of the uniform susceptibility at low temperatures.Comment: 10 pages, REVTeX, 14 figures included using psfig.st

    Insulating phases of the infinite-dimensional Hubbard model

    Full text link
    A theory is developed for the T=0 Mott-Hubbard insulating phases of the infinite-dimensional Hubbard model at half-filling, including both the antiferromagnetic (AF) and paramagnetic (P) insulators. Local moments are introduced explicitly from the outset, enabling ready identification of the dominant low energy scales for insulating spin- flip excitations. Dynamical coupling of single-particle processes to the spin-flip excitations leads to a renormalized self-consistent description of the single-particle propagators that is shown to be asymptotically exact in strong coupling, for both the AF and P phases. For the AF case, the resultant theory is applicable over the entire U-range, and is discussed in some detail. For the P phase, we consider in particular the destruction of the Mott insulator, the resultant critical behaviour of which is found to stem inherently from proper inclusion of the spin-flip excitations.Comment: 13 pages Revtex, 12 postscript figure

    Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet

    Full text link
    The interplay of disorder and spin-fluctuation effects in a disordered antiferromagnet is studied. In the weak-disorder regime (W \le U), while the energy gap decreases rapidly with disorder, the sublattice magnetization, including quantum corrections, is found to remain essentially unchanged in the strong correlation limit. Magnon energies and Neel temperature are enhanced by disorder in this limit. A single paradigm of disorder-enhanced delocalization qualitatively accounts for all these weak disorder effects. Vertex corrections and magnon damping, which appear only at order (W/U)^4, are also studied. With increasing disorder a crossover is found at W \sim U, characterized by a rapid decrease in sublattice magnetization due to quenching of local moments, and formation of spin vacancies. The latter suggests a spin-dilution behavior, which is indeed observed in softened magnon modes, lowering of Neel temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review B. References adde

    Constrained-path quantum Monte Carlo simulations of the zero-temperature disordered two-dimensional Hubbard model

    Full text link
    We study the effects of disorder on long-range antiferromagnetic correlations in the half-filled, two dimensional, repulsive Hubbard model at T=0. A mean field approach is first employed to gain a qualitative picture of the physics and to guide our choice for a trial wave function in a constrained path quantum Monte Carlo (CPQMC) method that allows for a more accurate treatment of correlations. Within the mean field calculation, we observe both Anderson and Mott insulating antiferromagnetic phases. There are transitions to a paramagnet only for relatively weak coupling, U < 2t in the case of bond disorder, and U < 4t in the case of on-site disorder. Using ground-state CPQMC we demonstrate that this mean field approach significantly overestimates magnetic order. For U=4t, we find a critical bond disorder of Vc = (1.6 +- 0.4)t even though within mean field theory no paramagnetic phase is found for this value of the interaction. In the site disordered case, we find a critical disorder of Vc = (5.0 +- 0.5)t at U=4t.Comment: Revtex, 13 pages, 15 figures. Minor changes to title and abstract, discussion and references added, figures 5, 6, 8, 9 replaced with easier to read version

    Disorder and Impurities in Hubbard-Antiferromagnets

    Full text link
    We study the influence of disorder and randomly distributed impurities on the properties of correlated antiferromagnets. To this end the Hubbard model with (i) random potentials, (ii) random hopping elements, and (iii) randomly distributed values of interaction is treated using quantum Monte Carlo and dynamical mean-field theory. In cases (i) and (iii) weak disorder can lead to an enhancement of antiferromagnetic (AF) order: in case (i) by a disorder-induced delocalization, in case (iii) by binding of free carriers at the impurities. For strong disorder or large impurity concentration antiferromagnetism is eventually destroyed. Random hopping leaves the local moment stable but AF order is suppressed by local singlet formation. Random potentials induce impurity states within the charge gap until it eventually closes. Impurities with weak interaction values shift the Hubbard gap to a density off half-filling. In both cases an antiferromagnetic phase without charge gap is observed.Comment: 16 pages, 9 figures, latex using vieweg.sty (enclosed); typos corrected, references updated; to appear in "Advances in Solid State Physics", Vol. 3

    Two-Particle-Self-Consistent Approach for the Hubbard Model

    Full text link
    Even at weak to intermediate coupling, the Hubbard model poses a formidable challenge. In two dimensions in particular, standard methods such as the Random Phase Approximation are no longer valid since they predict a finite temperature antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as particle conservation, the Pauli principle, the local moment and local charge sum rules. The self-energy formula does not assume a Migdal theorem. There is consistency between one- and two-particle quantities. Internal accuracy checks allow one to test the limits of validity of TPSC. Here I present a pedagogical review of TPSC along with a short summary of existing results and two case studies: a) the opening of a pseudogap in two dimensions when the correlation length is larger than the thermal de Broglie wavelength, and b) the conditions for the appearance of d-wave superconductivity in the two-dimensional Hubbard model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems", Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages. Misprint in Eq.(23) corrected (thanks D. Bergeron
    corecore