1,126 research outputs found
Teleological Essentialism: Generalized
Natural/social kind essentialism is the view that natural kind categories, both living and non-living natural kinds, as well as social kinds (e.g., race, gender), are essentialized. On this view, artifactual kinds are not essentialized. Our viewâteleological essentialismâis that a broad range of categories are essentialized in terms of teleology, including artifacts. Utilizing the same kinds of experiments typically used to provide evidence of essentialist thinkingâinvolving superficial change (study 1), transformation of insides (study 2) and inferences about offspring (study 3)âwe find support for the view that a broad range of categoriesâliving natural kinds, non-living natural kinds and artifactual kindsâare essentialized in terms of teleology. Study 4 tests a unique prediction of teleological essentialism and also provides evidence that people make inferences about purposes which in turn guide categorization judgments
Astrometry with MCAO: HST-GeMS proper motions in the globular cluster NGC 6681
Aims: for the first time the astrometric capabilities of the Multi-Conjugate
Adaptive Optics (MCAO) facility GeMS with the GSAOI camera on Gemini-South are
tested to quantify the accuracy in determining stellar proper motions in the
Galactic globular cluster NGC 6681. Methods: proper motions from HST/ACS for a
sample of its stars are already available, and this allows us to construct a
distortion-free reference at the epoch of GeMS observations that is used to
measure and correct the temporally changing distortions for each GeMS exposure.
In this way, we are able to compare the corrected GeMS images with a
first-epoch of HST/ACS images to recover the relative proper motion of the
Sagittarius dwarf spheroidal galaxy with respect to NGC 6681. Results: we find
this to be (\mu_{\alpha}cos\delta, \mu_{\delta}) = (4.09,-3.41) mas/yr, which
matches previous HST/ACS measurements with a very good accuracy of 0.03 mas/yr
and with a comparable precision (r.m.s of 0.43 mas/yr). Conclusions: this study
successfully demonstrates that high-quality proper motions can be measured for
quite large fields of view (85 arcsec X 85 arcsec) with MCAO-assisted,
ground-based cameras and provides a first, successful test of the performances
of GeMS on multi-epoch data.Comment: 5 pages, 4 figures. Accepted for publication by A&A Letter
Towards Precision Photometry with Extremely Large Telescopes: the Double Subgiant Branch of NGC 1851
The Extremely Large Telescopes currently under construction have a collecting
area that is an order of magnitude larger than the present largest optical
telescopes. For seeing-limited observations the performance will scale as the
collecting area but, with the successful use of adaptive optics, for many
applications it will scale as (where is the diameter of the primary
mirror). Central to the success of the ELTs, therefore, is the successful use
of multi-conjugate adaptive optics (MCAO) that applies a high degree correction
over a field of view larger than the few arcseconds that limits classical
adaptive optics systems. In this letter, we report on the analysis of crowded
field images taken on the central region of the Galactic globular cluster NGC
1851 in band using GeMS at the Gemini South telescope, the only
science-grade MCAO system in operation. We use this cluster as a benchmark to
verify the ability to achieve precise near-infrared photometry by presenting
the deepest photometry in crowded fields ever obtained from the ground.
We construct a colour-magnitude diagram in combination with the F606W band from
HST/ACS. As well as detecting the "knee" in the lower main sequence at
, we also detect the double subgiant branch of NGC 1851, that
demonstrates the high photometric accuracy of GeMS in crowded fields.Comment: Accepted for publication in ApJL (3 Sep 2015). A version of the paper
with high-res images is available at
http://www.astro.uvic.ca/~alan/ms_arxiv_hr.pd
Teleological Essentialism
Placeholder essentialism is the view that there is a causal essence that holds category members together, though we may not know what the essence is. Sometimes the placeholder can be filled in by scientific essences, such as when we acquire scientific knowledge that the atomic weight of gold is 79. We challenge the view that placeholders are elaborated by scientific essences. On our view, if placeholders are elaborated, they are elaborated Aristotelian essences, a telos. Utilizing the same kinds of experiments used by traditional essentialistsâinvolving superficial change (study 1), transformation of insides (study 2), acquired traits (study 3) and inferences about offspring (study 4)âwe find support for the view that essences are elaborated by a telos. And we find evidence (study 5) that teleological essences may generate category judgments
The Low Energy Tagger for the KLOE-2 experiment
The KLOE experiment at the upgraded DAFNE e+e- collider in Frascati (KLOE-2)
is going to start a new data taking at the beginning of 2010 with its detector
upgraded with a tagging system for the identification of gamma-gamma
interactions. The tagging stations for low-energy e+e- will consist in two
calorimeters The calorimeter used to detect low-energy e+e- will be placed
between the beam-pipe outer support structure and the inner wall of the KLOE
drift chamber. This calorimeter will be made of LYSO crystals readout by
Silicon Photomultipliers, to achieve an energy resolution better than 8% at 200
MeV.Comment: 4 pages, 5 figures, in the proceedings of "Frontier detectors for
frontier physics", isola d'Elba, Italy, May 200
Sinonasal mucosal melanoma: Molecular profile and therapeutic implications from a series of 32 cases
BACKGROUND:
Primary sinonasal mucosal melanomas are aggressive tumors with a poor clinical control by current treatments, raising the urgent need of novel strategies.
METHODS:
By fluorescence in situ hybridization (FISH), direct sequencing, and immunohistochemistry, we investigate the spectrum of molecular abnormalities in a cohort of 32 cases of primary sinonasal mucosal melanomas.
RESULTS:
We found that all primary sinonasal mucosal melanomas lack BRAF V600E mutation; in addition, they are characterized by somatic mutations of NRAS (22%) and KIT (12.5%), together with amplification of RREB1 (100%) and loss of MYB (76%). The large majority of cases showed KIT protein expression (96.9%). Among tumor suppressor genes, primary sinonasal mucosal melanomas showed loss of PTEN (48.1%) and p16/INK4a (55.2%). All tested cases showed expression of pAkt and pErk, suggesting a combined activation of PI3K/Akt and RAS-mitogen-activated protein kinase (MAPK) pathways.
CONCLUSIONS:
This molecular fingerprint strongly argues against the clinical efficacy of BRAF-inhibitors, but could candidate primary sinonasal mucosal melanomas to therapeutic strategies targeting RAS and KIT mutations or inhibiting PI3K-Akt-mTOR pathway
Spectral engineering of optical fiber preforms through active nanoparticle doping
Europium doped alkaline earth fluoride [Eu:AEF(2) (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, tau, of the Eu3+ emission that follows the cationic mass; tau(Ca) \u3c tau(Sr) \u3c tau(Ba) with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise standard materials, e.g., vapor-derived silica, in next generation optical fibers
Spectral Engineering of Optical Fiber Preforms Through Active Nanoparticle Doping
Europium doped alkaline earth fluoride [Eu:AEF2 (AE = Ca, Sr, Ba)] nanoparticles were synthesized and systematically incorporated into the core of modified chemical vapor deposition (MCVD)-derived silica-based preforms by solution doping. The resulting preforms were examined to determine the impact of the nanoparticles chemistry on the spectroscopic behavior of the glass. The dominant existence of Eu3+ was demonstrated in all preforms, which is in contrast to conventional solution doped preforms employing dissolved europium salts where Eu2+ is primarily observed. Raman spectroscopy and fluorescence lifetime measurements indicated that the nanoparticles composition is effective in controlling, at a local chemical and structural level, the spectroscopic properties of active dopants in optical fiber glasses. Further, there is a systematic and marked increase in radiative lifetime, Ï, of the Eu3+ emission that follows the cationic mass; ÏCa \u3c ÏSr \u3c ÏBa with the BaF2-derived sample yielding a 37% lengthening of the lifetime over the CaF2-derived one. Such nanoscale control of what otherwise is silica glass could be useful for realizing property-enhanced and tailored spectroscopic performance from otherwise âstandardâ materials, e.g., vapor-derived silica, in next generation optical fibers
- âŠ