10 research outputs found

    Elastic waves push organic fluids from reservoir rock

    Get PDF
    Elastic waves have been observed to increase productivity of oil wells, although the reason for the vibratory mobilization of the residual organic fluids has remained unclear. Residual oil is entrapped as ganglia in pore constrictions because of resisting capillary forces. An external pressure gradient exceeding an ‘‘unplugging’’ threshold is needed to carry the ganglia through. The vibrations help overcome this resistance by adding an oscillatory inertial forcing to the external gradient; when the vibratory forcing acts along the gradient and the threshold is exceeded, instant ‘‘unplugging’’ occurs. The mobilization effect is proportional to the amplitude and inversely proportional to the frequency of vibrations. We observe this dependence in a laboratory experiment, in which residual saturation is created in a glass micromodel, and mobilization of the dyed organic ganglia is monitored using digital photography.We also directly demonstrate the release of an entrapped ganglion by vibrations in a computational fluid-dynamics simulation

    Monitoring hydraulic fracturing using distributed acoustic sensing in a treatment well

    No full text

    Elastic waves push organic fluids from reservoir rock

    No full text
    Elastic waves have been observed to increase productivity of oil wells, although the reason for the vibratory mobilization of the residual organic fluids has remained unclear. Residual oil is entrapped as ganglia in pore constrictions because of resisting capillary forces. An external pressure gradient exceeding an ‘‘unplugging’’ threshold is needed to carry the ganglia through. The vibrations help overcome this resistance by adding an oscillatory inertial forcing to the external gradient; when the vibratory forcing acts along the gradient and the threshold is exceeded, instant ‘‘unplugging’’ occurs. The mobilization effect is proportional to the amplitude and inversely proportional to the frequency of vibrations. We observe this dependence in a laboratory experiment, in which residual saturation is created in a glass micromodel, and mobilization of the dyed organic ganglia is monitored using digital photography.We also directly demonstrate the release of an entrapped ganglion by vibrations in a computational fluid-dynamics simulation.This article is from Geophysical Research Letters 32 (2005): L13303, doi:10.1029/2005GL023123. Posted with permission.</p

    Seafloor borehole array seismic system (SEABASS)

    No full text
    The Seafloor Borehole Array Seismic System (SEABASS) has been developed to measure the pressure and three dimensional particle velocity of the VLF sound field (2-50HZ) below the seafloor in the deep ocean (water depths of up to 6km). The system consists off our three-component borehole seismometers (with an optional hydrophone), a borehole digitizing unit, and a seafloor control and recording package. The system can be deployed using a wire line re-entry capability from a conventional research vessel in Deep Sea Drilling Project (DSDP) and Ocean Drilling Project (ODP) boreholes. Data from below the seafloor are acquired either on-board the research vessel via coaxial tether or remotely on the seafloor in a self-contained package. If necessary the data module from the seafloor package can be released independently and recovered on the surface. This paper describes the engineering specifications of SEABASS, the tests that were carried out, and preliminary results from an actual deep sea deployment. Ambient noise levels beneath the seafloor acquired on the Low Frequency Acoustic-Seismic Experiment (LFASE) are within 20dB of levels from previous seafloor borehole seismic experiments and from land borehole measurements. The ambient noise observed on LFASE decreases by up to 12dB in the upper 100m of the seafloor in a sedimentary environment.This work was carried out under JHU Contract # 602809-0 and under ONR contracts #N00014-89-C-0018, #N00014-89-J-1012, and #N00014-90-C-0098
    corecore