554 research outputs found

    A 3D immersive discrete event simulator for enabling prototyping of factory layouts

    Get PDF
    There is an increasing need to eliminate wasted time and money during factory layout design and subsequent construction. It is presently difficult for engineers to foresee if a certain layout is optimal for work and material flows. By exploiting modelling, simulation and visualisation techniques, this paper presents a tool concept called immersive WITNESS that combines the modelling strengths of Discrete Event Simulation (DES) with the 3D visualisation strengths of recent 3D low cost gaming technology to enable decision makers make informed design choices for future factories layouts. The tool enables engineers to receive immediate feedback on their design choices. Our results show that this tool has the potential to reduce rework as well as the associated costs of making physical prototypes

    Testing High-dimensional Multinomials with Applications to Text Analysis

    Full text link
    Motivated by applications in text mining and discrete distribution inference, we investigate the testing for equality of probability mass functions of KK groups of high-dimensional multinomial distributions. A test statistic, which is shown to have an asymptotic standard normal distribution under the null, is proposed. The optimal detection boundary is established, and the proposed test is shown to achieve this optimal detection boundary across the entire parameter space of interest. The proposed method is demonstrated in simulation studies and applied to analyze two real-world datasets to examine variation among consumer reviews of Amazon movies and diversity of statistical paper abstracts

    A comparative study of wave forcing derived from the ERA-40 and ERA-interim reanalysis data sets

    Get PDF
    The Eliassen–Palm (E-P) flux divergences derived from ERA-40 and ERA-Interim show significant differences during northern winter. The discrepancies are marked by vertically alternating positive and negative anomalies at high latitudes and are manifested via a difference in the climatology. The magnitude of the discrepancies can be greater than the interannual variability in certain regions. These wave forcing discrepancies are only partially linked to differences in the residual circulation but they are evidently related to the static stability in the affected regions. Thus, the main cause of the discrepancies is most likely an imbalance of radiative heating. Two significant sudden changes are detected in the differences between the eddy heat fluxes derived from the two reanalyses. One of the changes may be linked to the bias corrections applied to the infrared radiances from the NOAA-12 High-Resolution Infrared Radiation Sounder in ERA-40, which is known to be contaminated by volcanic aerosol from the 1991 eruption of Mt. Pinatubo. The other change may be due in part to the use of uncorrected radiances from the NOAA-15 Advanced Microwave Sounding Units by ERA-Interim since 1998. These sudden changes have the potential to alter the wave forcing trends in the affected reanalysis, suggesting that extreme care is needed when one comes to extract trends from the highly derived wave forcing quantities

    The Amundsen Sea low

    Get PDF
    We develop a climatology of the Amundsen Sea low (ASL) covering the period 1979–2008 using ECMWF operational and reanalysis fields. The depth of the ASL is strongly influenced by the phase of the Southern annular mode (SAM) with positive (negative) mean sea level pressure anomalies when the SAM is negative (positive). The zonal location of the ASL is linked to the phase of the mid-tropospheric planetary waves and the low moves west from close to 110°W in January to near 150°W in June as planetary waves 1 to 3 amplify and their phases shift westwards. The ASL is deeper by a small, but significant amount, during the La Niña phase of El Niño-Southern Oscillation (ENSO) compared to El Niño. The difference in depth of the low between the two states of ENSO is greatest in winter. There is no statistically significant difference in the zonal location of the ASL between the different phases of ENSO. Over 1979–2008 the low has deepened in January by 1.7 hPa dec−1 as the SAM has become more positive. It has also deepened in spring and autumn as the semi-annual oscillation has increase in amplitude over the last 30 years. An increase in central pressure and eastward shift in March has occurred as a result of a cooling of tropical Pacific SSTs that altered the strength of the polar front jet

    Antarctic temperature variability and change from station data

    Get PDF
    Variability and change in near‐surface air temperature at 17 Antarctic stations is examined using data from the SCAR READER database. We consider the relationships between temperature, and atmospheric circulation, sea ice concentration and forcing by the tropical oceans. All 17 stations have their largest inter‐annual temperature variability during the winter and the annual mean temperature anomalies are dominated by winter temperatures. The large inter‐annual temperature variability on the western Antarctic Peninsula has decreased over the instrumental period as sea ice has declined. Variability in the phase of the SAM exerts the greatest control of temperatures, although tropical Pacific forcing has also played a large part, along with local atmospheric circulation variability at some locations. The relationship of positive (negative) SAM and high (low) Peninsula and low (high) East Antarctic temperatures was not present before the mid‐1970s. Thirteen of the 17 stations have experienced a positive trend in their annual mean temperature over the full length of their record, with the largest being at Vernadsky (formerly Faraday) (0.46° ± 0.15 C dec−1) on the western side of the Antarctic Peninsula. The deepening of the Amundsen Sea Low as a result of the more positive SAM and changes in the IPO and PDO have contributed to the warming of the Peninsula. Beyond the Antarctic Peninsula there has been little significant change in temperature. The two plateau stations had a small cooling from the late 1970s to the late 1990s consistent with the SAM becoming positive, but have subsequently warmed. During spring there has been an Antarctic‐wide warming, with all but one station having experienced an increase in temperature, although the only trends that were significant were at Vostok, Scott base, Vernadsky and Amundsen‐Scott. In this season much of the Peninsula/West Antarctic warming can be attributed to tropical Pacific forcing through the IPO/PDO

    Antarctic sea ice increase consistent with intrinsic variability of the Amundsen Sea Low

    Get PDF
    We investigate the relationship between atmospheric circulation variability and the recent trends in Antarctic sea ice extent (SIE) using Coupled Model Intercomparison Project Phase 5 (CMIP5) atmospheric data, ECMWF Interim reanalysis fields and passive microwave satellite data processed with the Bootstrap version 2 algorithm. Over 1979–2013 the annual mean total Antarctic SIE increased at a rate of 195 × 103 km2 dec−1 (1.6 % dec−1), p < 0.01. The largest regional positive trend of annual mean SIE of 119 × 103 km2 dec−1 (4.0 % dec−1) has been in the Ross Sea sector. Off West Antarctica there is a high correlation between trends in SIE and trends in the near-surface winds. The Ross Sea SIE seasonal trends are positive throughout the year, but largest in spring. The stronger meridional flow over the Ross Sea has been driven by a deepening of the Amundsen Sea Low (ASL). Pre-industrial control and historical simulations from CMIP5 indicate that the observed deepening of the ASL and stronger southerly flow over the Ross Sea are within the bounds of modeled intrinsic variability. The spring trend would need to continue for another 11 years for it to fall outside the 2 standard deviation range seen in 90 % of the simulations
    • 

    corecore