4,240 research outputs found
Infrared spectroscopy of star formation in galaxies
The Brackett alpha and beta lines with 7.2 seconds angular and 350 km/s velocity resolution were observed in 11 infrared-bright galaxies. From these measurements extinctions, Lyman continuum fluxes, and luminosities due to OB stars were derived. The galaxies observed to date are NGC3690, M38, NGC 5195, Arp 220, NGC 520, NGC660, NGC1614, NGC 3079, NGC 6946, NGC 7714, and Maffei 2, all of which were suggested at some time to be starburst ogjects. The contributions of OB stars to the luminosities of these galaxies can be quantified from the measurements and range from insignificant to sufficient to account for the total energy output. The OB stellar luminosities observed are as high as 10 to the 12th solar luminosities in the galaxy NGC 1614. It is noteworthy that star formation can play very different roles in the infrared energy output of galaxies of similar luminosity, as for example Arp 220 and NGC 1614. In addition to probing the star formation process in these galaxies, the Brackett line measurements, when compared to radio and infrared continuum results, have revealed some unexpected and at present imperfectly understood phenomena: in some very luminous sources the radio continuum appears to be suppressed relative to the infrared recombination lines; in many galaxies there is a substantial excess of 10 micron flux over that predicted from simple models of Lyman alpha heating of dust if young stars are the only significant energy source
Perturbative Theoretical Model of Electronic Transient Circular Dichroism Spectroscopy of Molecular Aggregates
A chiral analog of transient absorption spectroscopy, transient circular dichroism (TCD) spectroscopy is an emerging time-resolved method. Both spectroscopic methods can probe the electronic transitions of a sample, and TCD is additionally sensitive to the dynamic aspects of chirality, such as those induced by molecular excitons. Here, we develop a theoretical description of TCD for electronic multi-level models in which the pump pulse is linearly polarized and probe pulse is alternately left- and right-circularly polarized. We derive effective response functions analogous to those often used to describe other four-wave mixing methods and then simulate and analyze TCD spectra for three representative multi-level electronic model systems. We elaborate on the presence and detection of the spectral signatures of electronic coherences
LEADING INDICATORS FOR REGIONAL COTTON RESPONSE: STRUCTURAL AND TIME SERIES MODELING RESULTS
Resurging southeastern cotton production compels better cotton acreage forecasts for planning seed, chemical, and other input requirements. Structural models describe leading acreage response indicators, and forecasts are compared time-series models. Cotton price, loan rate, deficiency payments, lagged corn acreage, the PIK program, and previous cotton yield significantly influence response.Crop Production/Industries,
LEADING INDICATORS OF REGIONAL COTTON ACREAGE RESPONSE: STRUCTURAL AND TIME SERIES MODELING RESULTS
Resurgent cotton production compels better acreage forecasts for planning seed, chemical, and other input requirements. Structural models describe leading acreage response indicators, and forecasts are compared to time-series models. Cotton price, loan rate, deficiency payments, lagged corn acreage, the PIK program, and previous cotton yield significantly influence cotton acreage response.resurgent cotton production, cotton acreage, Crop Production/Industries,
Robustness promotes evolvability of thermotolerance in an RNA virus
<p>Abstract</p> <p>Background</p> <p>The ability for an evolving population to adapt to a novel environment is achieved through a balance of robustness and evolvability. Robustness is the invariance of phenotype in the face of perturbation and evolvability is the capacity to adapt in response to selection. Genetic robustness has been posited, depending on the underlying mechanism, to either decrease the efficacy of selection, or increase the possibility of future adaptation. However, the true effect of genetic robustness on evolvability in biological systems remains uncertain.</p> <p>Results</p> <p>Here we demonstrate that genetic robustness increases evolvability of thermotolerance in laboratory populations of the RNA virus φ6. We observed that populations founded by robust clones evolved greater resistance to heat shock, relative to populations founded by brittle (less-robust) clones. Thus, we provide empirical evidence for the idea that robustness can promote evolvability in this environment, and further suggest that evolvability can arise indirectly via selection for robustness, rather than through direct selective action.</p> <p>Conclusion</p> <p>Our data imply that greater tolerance of mutational change is associated with virus adaptability in a new niche, a finding generally relevant to evolutionary biology, and informative for elucidating how viruses might evolve to emerge in new habitats and/or overcome novel therapies.</p
Multiphase PC/PL Relations: Comparison between Theory and observations
Cepheids are fundamental objects astrophysically in that they hold the key to
a CMB independent estimate of Hubble's constant. A number of researchers have
pointed out the possibilities of breaking degeneracies between Omega_Matter and
H0 if there is a CMB independent distance scale accurate to a few percent (Hu
2005). Current uncertainties in the distance scale are about 10% but future
observations, with, for example, the JWST, will be capable of estimating H0 to
within a few percent. A crucial step in this process is the Cepheid PL
relation. Recent evidence has emerged that the PL relation, at least in optical
bands, is nonlinear and that neglect of such a nonlinearity can lead to errors
in estimating H0 of up to 2 percent. Hence it is important to critically
examine this possible nonlinearity both observationally and theoretically.
Existing PC/PL relations rely exclusively on evaluating these relations at mean
light. However, since such relations are the average of relations at different
phases. Here we report on recent attempts to compare theory and observation in
the multiphase PC/PL planes. We construct state of the art Cepheid pulsations
models appropriate for the LMC/Galaxy and compare the resulting PC/PL relations
as a function of phase with observations. For the LMC, the (V-I) period-color
relation at minimum light can have quite a narrow dispersion (0.2-0.3 mags) and
thus could be useful in placing constraints on models. At longer periods, the
models predict significantly redder (by about 0.2-0.3 mags) V-I colors. We
discuss possible reasons for this and also compare PL relations at various
phases of pulsation and find clear evidence in both theory and observations for
a nonlinear PL relation.Comment: 5 pages, 8 figures, proceeding for "Stellar Pulsation: Challenges for
Theory and Observation", Santa Fe 200
Recommended from our members
Liquid Metal Processing and Casting Experiences at the U.S. Department of Energy's Albany Research Center
In this paper we will discuss some of the early pioneering work as well as some of our more recent research. The Albany Research Center (ARC) has been involved with the melting and processing of metals since it was established in 1942. In the early days, hardly anything was known about melting refractory or reactive metals and as such, virtually everything had to be developed in-house. Besides the more common induction heated air-melt furnaces, ARC has built and/or utilized a wide variety of furnaces including vacuum arc remelt ingot and casting furnaces, cold wall induction furnaces, electric arc furnaces, cupola furnaces and reverberatory furnaces. The melt size of these furnaces range from several grams to a ton or more. We have used these furnaces to formulate custom alloys for wrought applications as well as for such casting techniques as spin casting, investment casting and lost foam casting among many. Two early spin-off industrializations were Wah Chang (wrought zirconium alloys for military and commercial nuclear applications) and Oremet (both wrought and cast Ti). Both of these companies are now part of the ATI Allegheny Ludlum Corporation
Design, development and deployment of a software platform for real-time reporting in the west of Scotland demersal fleet : FIS032
Acknowledgements We thank the co-funders (FIS, SFO, Scottish White Fish Producers Association, Seafish and the University of Aberdeen), the participating POs and the participating fishers for being willing to take a chance on RTR. Critical early support was given by D. Anderson (Aberdeen Fish Producers Organisation) and M. Park (SWFPA). K. Haflinger (Sea State Inc., Seattle, USA) generously shared valuable insights about the use of RTR on the west coast. C. Asare is thanked for his concerted efforts trying to “catch” fishers to be interviewed in 2019. C. Needle (Marine Scotland Science) kick-started interest in mapping unwanted catch of juvenile cod in the North Sea.Publisher PD
A Discontinuous Galerkin Chimera scheme
The Chimera overset method is a powerful technique for modeling fluid flow associated with complex engineering problems using structured meshes. The use of structured meshes has enabled engineers to employ a number of high-order schemes, such as the WENO and compact differencing schemes. However, the large stencil associated with these schemes can significantly complicate the inter-grid communication scheme and hole cutting procedures. This paper demonstrates a methodology for using the Discontinuous Galerkin (DG) scheme with Chimera overset meshes. The small stencil of the DG scheme makes it particularly suitable for Chimera meshes as it simplifies the inter-grid communication scheme as well as hole cutting procedures. The DG-Chimera scheme does not require a donor interpolation method with a large stencil because the DG scheme represents the solution as cell local polynomials. The DG-Chimera method also does not require the use of fringe points to maintain the interior stencil across inter-grid boundaries. Thus, inter-grid communication can be established as long as the receiving boundary is enclosed by or abuts the donor mesh. This makes the inter-grid communication procedure applicable to both Chimera and zonal meshes. Details of the DG-Chimera scheme are presented, and the method is demonstrated on a set of two-dimensional inviscid flow problems
- …