1,427 research outputs found

    Clinical evaluation of Behavioral Activation Treatment of anxiety (BATA) in three older adults

    Get PDF
    This paper describes three single-case experimental evaluations of behavioral activation treatment of anxiety (BATA) applied with a 51-year-old male, a 62-year-old female, and a 53-year-old female, each of whom met DSM-IV criteria for generalised anxiety disorder (GAD). Each case was a clinical replication of an initial trial of BATA reported in Turner and Leach (2009). Treatment was delivered in twelve weekly 60-minute individual sessions and evaluated using an A-B-C phase change with repeated measurement design. Decreased scores in self-reported anxiety were obtained in each case and the improvements were maintained during a 3-month no treatment maintenance phase. Compared to baseline, each participant also recorded increases in activity levels in some key life areas during the treatment phase. These preliminary findings suggest that increased activation in functionally positive areas is associated with reported decreases in anxiety and that BATA could be an effective stand-alone treatment for GAD in adults

    The PL calibration for Milky Way Cepheids and its implications for the distance scale

    Full text link
    The rationale behind recent calibrations of the Cepheid PL relation using the Wesenheit formulation is reviewed and reanalyzed, and it is shown that recent conclusions regarding a possible change in slope of the PL relation for short-period and long-period Cepheids are tied to a pathological distribution of HST calibrators within the instability strip. A recalibration of the period-luminosity relation is obtained using Galactic Cepheids in open clusters and groups, the resulting relationship, described by log L/L_sun = 2.415(+-0.035) + 1.148(+-0.044)log P, exhibiting only the moderate scatter expected from color spread within the instability strip. The relationship is confirmed by Cepheids with HST parallaxes, although without the need for Lutz-Kelker corrections, and in general by Cepheids with revised Hipparcos parallaxes, albeit with concerns about the cited precisions of the latter. A Wesenheit formulation of Wv = -2.259(+-0.083) - 4.185(+-0.103)log P for Galactic Cepheids is tested successfully using Cepheids in the inner regions of the galaxy NGC 4258, confirming the independent geometrical distance established for the galaxy from OH masers. Differences between the extinction properties of interstellar and extragalactic dust may yet play an important role in the further calibration of the Cepheid PL relation and its application to the extragalactic distance scale.Comment: Accepted for Publication (Astrophysics & Space Science

    On the degree of scale invariance of inflationary perturbations

    Get PDF
    Many, if not most, inflationary models predict the power-law index of the spectrum of density perturbations is close to one, though not precisely equal to one, |n-1| \sim O(0.1), implying that the spectrum of density perturbations is nearly, but not exactly, scale invariant. Some models allow n to be significantly less than one (n \sim 0.7); a spectral index significantly greater than one is more difficult to achieve. We show that n \approx 1 is a consequence of the slow-roll conditions for inflation and ``naturalness,'' and thus is a generic prediction of inflation. We discuss what is required to deviate significantly from scale invariance, and then show, by explicit construction, the existence of smooth potentials that satisfy all the conditions for successful inflation and give nn as large as 2.Comment: 7 pages, 2 figures, submitted to Phys. Rev.

    Damping of Tensor Modes in Cosmology

    Full text link
    An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6 % for wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7% for ΩMh2=0.1\Omega_Mh^2=0.1 to 9.0% for ΩMh2=0.15\Omega_Mh^2=0.15. An Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not negligible.Comment: 14 pages. The original version of this paper has been expanded to deal with perturbations of any wavelength. While for wavelengths short enough to enter the horizon during radiation dominance, temperature and polarization correlations are damped by 35.6%, at the longest wavelengths the damping is from 9.0% to 11%. An added Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law outside the horizon, even during neutrino decoupling. Some references are also adde

    Quasi Two-dimensional Transfer of Elastic Waves

    Full text link
    A theory for multiple scattering of elastic waves is presented in a random medium bounded by two ideal free surfaces, whose horizontal size is infinite and whose transverse size is smaller than the mean free path of the waves. This geometry is relevant for seismic wave propagation in the Earth crust. We derive a time-dependent, quasi-2D radiative transfer equation, that describes the coupling of the eigenmodes of the layer (surface Rayleigh waves, SH waves, and Lamb waves). Expressions are found that relate the small-scale fluctuations to the life time of the modes and to their coupling rates. We discuss a diffusion approximation that simplifies the mathematics of this model significantly, and which should apply at large lapse times. Finally, coherent backscattering is studied within the quasi-2D radiative transfer equation for different source and detection configurations.Comment: REVTeX, 36 pages with 10 figures. Submitted to Phys. Rev.

    Shear and Mixing in Oscillatory Doubly Diffusive Convection

    Get PDF
    To investigate the mechanism of mixing in oscillatory doubly diffusive (ODD) convection, we truncate the horizontal modal expansion of the Boussinesq equations to obtain a simplified model of the process. In the astrophysically interesting case with low Prandtl number, large-scale shears are generated as in ordinary thermal convection. The interplay between the shear and the oscillatory convection produces intermittent overturning of the fluid with significant mixing. By contrast, in the parameter regime appropriate to sea water, large-scale flows are not generated by the convection. However, if such flows are imposed externally, intermittent overturning with enhanced mixing is observed.Comment: 24 pages, 16 figures, Accepted for publication in Geophysical and Astrophysical Fluid Dynamic

    Bjorken unpolarized and polarized sum rules: comparative analysis of large-N_F expansions

    Get PDF
    Analytical all-orders results are presented for the one-renormalon-chain contributions to the Bjorken unpolarized sum rule for the F_1 structure function of nu N deep-inelastic scattering in the large-N_F limit. The feasibility of estimating higher order perturbative QCD corrections, by the process of naive nonabelianization (NNA), is studied, in anticipation of measurement of this sum rule at a Neutrino Factory. A comparison is made with similar estimates obtained for the Bjorken polarized sum rule. Application of the NNA procedure to correlators of quark vector and scalar currents, in the euclidean region, is compared with recent analytical results for the O(alpha_s^4 N_F^2) terms.Comment: 9 page

    Absolute values of the London penetration depth in YBa2Cu3O6+y measured by zero field ESR spectroscopy on Gd doped single crystals

    Full text link
    Zero-field electron spin resonance (ESR) of dilute Gd ions substituted for Y in the cuprate superconductor YBa2_2Cu3_3O6+y_{\rm 6+y} is used as a novel technique for measuring the absolute value of the low temperature magnetic penetration depth λ(T0)\lambda(T\to 0). The Gd ESR spectrum of samples with 1\approx 1% substitution was obtained with a broadband microwave technique that measures power absorption bolometrically from 0.5 GHz to 21 GHz. This ESR spectrum is determined by the crystal field that lifts the level degeneracy of the spin 7/2 Gd3+^{3+} ion and details of this spectrum provide information concerning oxygen ordering in the samples. The magnetic penetration depth is obtained by relating the number of Gd ions exposed to the microwave magnetic field to the frequency-integrated intensity of the observed ESR transitions. This technique has allowed us to determine precise values of λ\lambda for screening currents flowing in the three crystallographic orientations (a^\hat a, b^\hat b and c^\hat c) in samples of Gdx_{\rm x}Y1x_{\rm 1-x}Ba2_2Cu3_3O6+y_{6+{\rm y}} of three different oxygen contents y=0.993{\rm y}=0.993 (Tc=89T_c = 89 K), y=0.77{\rm y}=0.77 (Tc=75T_c=75 K) and y=0.52{\rm y}=0.52 (Tc=56T_c=56 K). The in-plane values are found to depart substantially from the widely reported relation Tc1/λ2T_c\propto 1/\lambda^2.Comment: 14 pages, 12 figures; version to appear in PR

    Cosmokinetics: A joint analysis of Standard Candles, Rulers and Cosmic Clocks

    Full text link
    We study the accelerated expansion of the universe by using the kinematic approach. In this context, we parameterize the deceleration parameter, q(z), in a model independent way. Assuming three simple parameterizations we reconstruct q(z). We do the joint analysis with combination of latest cosmological data consisting of standard candles (Supernovae Union2 sample), standard ruler (CMB/BAO), cosmic clocks (age of passively evolving galaxies) and Hubble (H(z)) data. Our results support the accelerated expansion of the universe.Comment: PDFLatex, 15 pages, 12 pdf figures, revised version to appear in JCA

    Dynamic instabilities induced by asymmetric influence: Prisoners' dilemma game on small-world networks

    Full text link
    A two-dimensional small-world type network, subject to spatial prisoners' dilemma dynamics and containing an influential node defined as a special node with a finite density of directed random links to the other nodes in the network, is numerically investigated. It is shown that the degree of cooperation does not remain at a steady state level but displays a punctuated equilibrium type behavior manifested by the existence of sudden breakdowns of cooperation. The breakdown of cooperation is linked to an imitation of a successful selfish strategy of the influential node. It is also found that while the breakdown of cooperation occurs suddenly, the recovery of it requires longer time. This recovery time may, depending on the degree of steady state cooperation, either increase or decrease with an increasing number of long range connections.Comment: 5 pages, 6 figure
    corecore