3,940 research outputs found
b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity
At tree-level Higgs production in association with a b-quark pair proceeds
through the small Yukawa bottom coupling in the Standard Model. Even in the
limit where this coupling vanishes, electroweak one-loop effects, through the
top-Higgs Yukawa coupling in particular, can still trigger this reaction. This
contribution is small for Higgs masses around 120GeV but it quickly picks up
for higher Higgs masses especially because the one-loop amplitude develops a
leading Landau singularity and new thresholds open up. These effects can be
viewed as the production of a pair of top quarks which rescatter to give rise
to Higgs production through WW fusion. We study the leading Landau singularity
in detail. Since this singularity is not integrable when the one-loop amplitude
is squared, we regulate the cross section by taking into account the width of
the internal top and W particles. This requires that we extend the usual box
one-loop function to the case of imaginary masses. We show how this can be
implemented analytically in our case. We study in some detail the cross section
at the LHC as a function of the Higgs mass and show how some distributions can
be drastically affected compared to the tree-level result.Comment: 48 pages, 20 figures. Phys.Rev.D accepted version. Conclusions
unchanged, minor changes and references adde
Quantum critical dynamics of a S = 1/2 antiferromagnetic Heisenberg chain studied by 13C-NMR spectroscopy
We present a 13C-NMR study of the magnetic field driven transition to
complete polarization of the S=1/2 antiferromagnetic Heisenberg chain system
copper pyrazine dinitrate Cu(C_4H_4N_2)(NO_3)_2 (CuPzN). The static local
magnetization as well as the low-frequency spin dynamics, probed via the
nuclear spin-lattice relaxation rate 1/T_1, were explored from the low to the
high field limit and at temperatures from the quantum regime (k_B T << J) up to
the classical regime (k_B T >> J). The experimental data show very good
agreement with quantum Monte Carlo calculations over the complete range of
parameters investigated. Close to the critical field, as derived from static
experiments, a pronounced maximum in 1/T_1 is found which we interpret as the
finite-temperature manifestation of a diverging density of zero-energy magnetic
excitations at the field-driven quantum critical point.Comment: 5 pages, 4 figure
Phase diagrams of correlated electrons: systematic corrections to the mean field theory
Perturbative corrections to the mean field theory for particle-hole
instabilities of interacting electron systems are computed within a scheme
which is equivalent to the recently developed variational approach to the
Kohn-Luttinger superconductivity. This enables an unbiased comparison of
particle-particle and particle-hole instabilities within the same approximation
scheme. A spin-rotation invariant formulation for the particle-hole
instabilities in the triplet channel is developed. The method is applied to the
phase diagram of the t-t' Hubbard model on the square lattice. At the Van Hove
density, antiferromagnetic and d-wave Pomeranchuk phases are found to be stable
close to half filling. However, the latter phase is confined to an extremely
narrow interval of densities and away from the singular filling, d-wave
superconducting instability dominates
Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom
Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NO<sub>x</sub>) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NO<sub>x</sub> and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in urban plumes compared to regional aerosol (0.85 versus 0.9–0.95). We attribute these differences to the presence of relatively rapidly formed secondary aerosol, primarily OOA and ammonium nitrate, which must be taken into account in radiative forcing calculations
Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach
Symmetry properties of densities and mean fields appearing in the nuclear
Density Functional Theory with pairing are studied. We consider energy
functionals that depend only on local densities and their derivatives. The most
important self-consistent symmetries are discussed: spherical, axial,
space-inversion, and mirror symmetries. In each case, the consequences of
breaking or conserving the time-reversal and/or proton-neutron symmetries are
discussed and summarized in a tabulated form, useful in practical applications.Comment: 26 RevTex pages, 1 eps figure, 9 tables, submitted to Physical Review
Gauge-invariant magnetic perturbations in perfect-fluid cosmologies
We develop further our extension of the Ellis-Bruni covariant and
gauge-invariant formalism to the general relativistic treatment of density
perturbations in the presence of cosmological magnetic fields. We present
detailed analysis of the kinematical and dynamical behaviour of perturbed
magnetized FRW cosmologies containing fluid with non-zero pressure. We study
the magnetohydrodynamical effects on the growth of density irregularities
during the radiation era. Solutions are found for the evolution of density
inhomogeneities on small and large scales in the presence of pressure, and some
new physical effects are identified.Comment: Revised version (some minor changes - few equations added). 26 pages.
No figures. To appear in Classical and Quantum Gravit
Exact diagonalization of the S=1/2 Heisenberg antiferromagnet on finite bcc lattices to estimate properties on the infinite lattice
Here we generate finite bipartite body-centred cubic lattices up to 32
vertices. We have studied the spin one half Heisenberg antiferromagnet by
diagonalizing its Hamiltonian on each of the finite lattices and hence
computing its ground state properties. By extrapolation of these data we obtain
estimates of the T = 0 properties on the infinite bcc lattice. Our estimate of
the T = 0 energy agrees to five parts in ten thousand with third order spin
wave and series expansion method estimates, while our estimate of the staggered
magnetization agrees with the spin wave estimate to within a quarter of one
percent.Comment: 16 pages, LaTeX, 1 ps figure, to appear in J.Phys.
Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks
This paper considers the nonparametric maximum likelihood estimator (MLE) for
the joint distribution function of an interval censored survival time and a
continuous mark variable. We provide a new explicit formula for the MLE in this
problem. We use this formula and the mark specific cumulative hazard function
of Huang and Louis (1998) to obtain the almost sure limit of the MLE. This
result leads to necessary and sufficient conditions for consistency of the MLE
which imply that the MLE is inconsistent in general. We show that the
inconsistency can be repaired by discretizing the marks. Our theoretical
results are supported by simulations.Comment: 27 pages, 4 figure
- …