39 research outputs found

    Johnson-Nyquist noise in films and narrow wires

    Full text link
    The Johnson-Nyquist noise in narrow wires having a transverse size smaller than the screening length is shown to be white up to the frequency D/L2D/L^2 and to decay at higher frequencies as ω1/2\omega^{-{1/2}}. In two-dimensional films having a thickness smaller than the screening length, the Johnson-Nyquist noise is predicted to be frequency independent up to the frequency σ2D/L\sigma_{2D}/L and to have a {\it universal} 1/ω1/\omega spectrum at higher frequencies. These results are contrasted with the conventional noise spectra in neutral and three-dimensional charged liquids

    Effective charging energy for a regular granular metal array

    Full text link
    We study the Ambegaokar-Eckern-Sch\"{o}n (AES) model for a regular array of metallic grains coupled by tunnel junctions of conductance gg and calculate both paramagnetic and diamagnetic terms in the Kubo formula for the conductivity. We find analytically, and confirm by numerical path integral Monte Carlo methods, that for 0<g<40<g<4 the conductivity obeys an Arrhenius law σ(T)exp[E(g)/T]\sigma(T)\sim\exp[-E^{*}(g)/T] with an effective charging energy E(g)E^{*} (g) when the temperature is sufficiently low, due to a subtle cancellation between T2T^2 inelastic-cotunneling contributions in the paramagnetic and diamagnetic terms. We present numerical results for the effective charging energy and compare the results with recent theoretical analyses. We discuss the different ways in which the experimentally observed σ(T)exp[T0/T]\sigma(T)\sim\exp[-\sqrt{T_{0}/T}] law could be attributed to disorder.Comment: 5 pages, 3 figures, ReVTeX; added estimates of effective charging energies and discussion of effects of disorde

    Dimensional crossover in Sr2_2RuO4_4 within slave-boson mean-field theory

    Full text link
    Motivated by the anomalous temperature dependence of the c-axis resistivity of Sr2_2RuO4_4, the dimensional crossover from a network of perpendicular one-dimensional chains to a two-dimensional system due to a weak hybridization between the perpendicular chains is studied. The corresponding two-orbital Hubbard model is treated within a slave-boson mean-field theory (SBMFT) to take correlation effects into account such as the spin-charge separation on the one-dimensional chains. Using an RPA-like formulation for the Green's function of collective spinon-holon excitations the emergence of quasiparticles at low-temperatures is examined. The results are used to discuss the evolution of the spectral density and the c-axis transport within a tunneling approach. For the latter a regime change between low- and high-temperature regime is found in qualitative accordance with experimental data

    Coulomb blockade and quantum tunnelling in the low-conductivity phase of granular metals

    Full text link
    We study the effects of Coulomb interaction and inter-grain quantum tunnelling in an array of metallic grains using the phase-functional approach for temperatures TT well below the charging energy EcE_{c} of individual grains yet large compared to the level spacing in the grains. When the inter-grain tunnelling conductance g1g\gg1, the conductivity σ\sigma in dd dimensions decreases logarithmically with temperature (σ/σ0112πgdln(gEc/T)\sigma/\sigma_{0}\sim1-\frac{1}{2\pi gd}\ln(gE_{c}/T)), while for g0g\to0, the conductivity shows simple activated behaviour (σexp(Ec/T)\sigma \sim \exp(-E_c/T)). We show, for bare tunnelling conductance g1g \gtrsim 1, that the parameter γg(12/(gπ)ln(gEc/T))\gamma \equiv g(1-2/(g\pi)\ln(gE_{c}/T)) determines the competition between charging and tunnelling effects. At low enough temperatures in the regime 1γ1/βEc1\gtrsim \gamma \gg 1/\sqrt{\beta E_{c}}, a charge is shared among a finite number N=(Ec/T)/ln(π/2γz)N=\sqrt{(E_{c}/T)/\ln(\pi/2\gamma z)} of grains, and we find a soft activation behaviour of the conductivity, σz1exp(2(Ec/T)ln(π/2γz))\sigma\sim z^{-1}\exp(-2\sqrt{(E_{c}/T)\ln(\pi/2\gamma z)}), where zz is the effective coordination number of a grain.Comment: 11 pages REVTeX, 3 Figures. Appendix added, replaced with published versio

    Coherent-incoherent transition in the sub-Ohmic spin-boson model

    Full text link
    We study the spin-boson model with a sub-Ohmic bath using a variational method. The transition from coherent dynamics to incoherent tunneling is found to be abrupt as a function of the coupling strength α\alpha and to exist for any power 0<s<10 < s< 1, where the bath coupling is described by J(ω)αωsJ(\omega) \sim \alpha \omega^{s}. We find non-monotonic temperature dependence of the two-level gap K~\tilde{K} and a re-entrance regime close to the transition due to non-adiabatic low-frequency bath modes. Differences between thermodynamic and dynamic conditions for the transition as well as the limitations of the simplified bath description are discussed.Comment: 12 pages, 4 figure
    corecore