14 research outputs found
Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot
We introduce a new set of generalized Fokker-Planck equations that conserve
energy and mass and increase a generalized entropy until a maximum entropy
state is reached. The concept of generalized entropies is rigorously justified
for continuous Hamiltonian systems undergoing violent relaxation. Tsallis
entropies are just a special case of this generalized thermodynamics.
Application of these results to stellar dynamics, vortex dynamics and Jupiter's
great red spot are proposed. Our prime result is a novel relaxation equation
that should offer an easily implementable parametrization of geophysical
turbulence. This relaxation equation depends on a single key parameter related
to the skewness of the fine-grained vorticity distribution. Usual
parametrizations (including a single turbulent viscosity) correspond to the
infinite temperature limit of our model. They forget a fundamental systematic
drift that acts against diffusion as in Brownian theory. Our generalized
Fokker-Planck equations may have applications in other fields of physics such
as chemotaxis for bacterial populations. We propose the idea of a
classification of generalized entropies in classes of equivalence and provide
an aesthetic connexion between topics (vortices, stars, bacteries,...) which
were previously disconnected.Comment: Submitted to Phys. Rev.