5 research outputs found

    Greenness assessment of chromatographic methods used for analysis of empagliflozin: a comparative study

    Get PDF
    The analytical chemistry community is attempting to incorporate green chemistry concepts in the development of analytical techniques to redefine analytical methods and dramatically modify the philosophy of analytical technique development. Each greenness assessment method has its own benefits and drawbacks, as well as its own procedures. The results of each greenness assessment method produce numerous deductions regarding the selection of a greenest chromatographic method on which the determination of a greenness assessment tool depends. The current study examined the greenness behavior of 26 reported chromatographic methods in the literature for the evaluation of the medicine empagliflozin using three evaluation methods: the national environmental methods index (NEMI), the eco-scale assessment (ESA), and the green analytical procedure index (GAPI). This comparative study discussed the value of using more than one greenness evaluation methods while evaluating. The findings showed that the NEMI was a less informative and misleading tool. However, the ESA provided reliable numerical assessments out of 100. Despite the GAPI being a complex assessment compared to the others, it provided a fully descriptive three-colored pictogram and a precise assessment. The findings recommended applying more than one greenness assessment tool to evaluate the greenness of methods prior to planning laboratory-based analytical methods to ensure an environment friendly process

    Effect of the Addition of Varying Concentrations of Silver Nanoparticles on the Fluoride Uptake and Recharge of Glass Ionomer Cement

    No full text
    This study aimed to compare the amount of fluoride uptake and the recharge and release characteristics of conventional glass ionomer cement (GIC) without any additives in comparison to conventional glass ionomer cement supplemented with silver nanoparticles (AgNPs) at two concentrations: 0.1% and 0.2% (w/w). A total of 60 specimens were used in this in vitro study. The sample was divided into six groups—including three groups without fluoride charge: Group 1 (conventional GIC), Group 2 (GIC with 0.1% silver nanoparticles), and Group 3 (GIC with 0.2% silver nanoparticles; and three groups with fluoride charge: Group 4 (conventional GIC with fluoride); Group 5 (GIC with 0.1% silver nanoparticles with fluoride); Group 6 (GIC with 0.2% silver nanoparticles with fluoride), where Group 1 is considered the control group and the other five groups are used as the test groups. The amount of fluoride released was measured on days 1, 2, 7, 15, and 30. The comparisons were made between the groups with and without fluoride and among all the groups. A significant difference in the amount of fluoride released was observed between the groups, with the highest amount occurring in Group 1, followed by Group 2; the lowest amount of fluoride released was observed in Group 3 (p < 0.05). The groups with fluoride recharge (Groups 4, 5, and 6) exhibited a higher amount of fluoride release than the groups with no recharge (Groups 1, 2, and 3); however, Group 1 has more fluoride release compared to all other groups on days 1, 2, 7, 15, and 30 (p < 0.05). The amount of released fluoride decreased from day 1 to day 30 in all of the groups in the study. Despite the antimicrobial and anticariogenic benefits of adding silver nanoparticles to GIC, it seems that fluoride release characteristics are significantly affected by the addition of this material. This may force the clinician to a compromise between the antimicrobial benefit of silver nanoparticles and the remineralizing advantage of fluoride

    PLGA-Based Nanomedicine: History of Advancement and Development in Clinical Applications of Multiple Diseases

    No full text
    Research on the use of biodegradable polymers for drug delivery has been ongoing since they were first used as bioresorbable surgical devices in the 1980s. For tissue engineering and drug delivery, biodegradable polymer poly-lactic-co-glycolic acid (PLGA) has shown enormous promise among all biomaterials. PLGA are a family of FDA-approved biodegradable polymers that are physically strong and highly biocompatible and have been extensively studied as delivery vehicles of drugs, proteins, and macromolecules such as DNA and RNA. PLGA has a wide range of erosion times and mechanical properties that can be modified. Many innovative platforms have been widely studied and created for the development of methods for the controlled delivery of PLGA. In this paper, the various manufacturing processes and characteristics that impact their breakdown and drug release are explored in depth. Besides different PLGA-based nanoparticles, preclinical and clinical applications for different diseases and the PLGA platform types and their scale-up issues will be discussed

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore