4 research outputs found
Characterization of macular lesions in punctate inner choroidopathy with spectral domain optical coherence tomography.
PURPOSE: Punctate inner choroidopathy (PIC) is an ocular inflammatory disease. Spectral domain optical coherence tomography (SD-OCT) allows detailed visualization of retinal and choroidal structures. We aimed to describe the retinal changes on SD-OCT associated with PIC lesions localized in the macula.
METHODS: Retrospective case series: PIC lesions not associated with choroidal neovascularization (CNV) and captured by macular SD-OCT scans were identified and characterized.
RESULTS: Twenty-seven PIC lesions from seven patients (eight eyes) were identified and classified into four categories according to disease activity and temporal changes. Among clinically inactive patients, two main patterns were noted on OCT: (1) retinal pigment epithelium (RPE) elevation with sub-RPE hyper-reflective signals and (2) localized disruption of outer retinal layers with choroid and Bruch\u27s membrane (BM) generally spared. Clinically active patients demonstrated lesions with intact BM with RPE elevation that fluctuated with disease activity and sub-RPE hyper-reflective signals. Photoreceptor-associated bands on SD-OCT (PRs) were not visible during active disease, but returned to normal visibility when lesions were clinically stable. Seven lesions in patients without clinically detected activity demonstrated alteration of RPE elevation.
CONCLUSION: SD-OCT can provide detailed structural characteristics of PIC lesions. RPE elevation is noted in many lesions while BM and choroid are spared. Photoreceptor-associated bands on SD-OCT appear compressed during clinically active stages and are visible during stabilization. OCT may provide information on activity not detected clinically
Importance of proper diagnosis for management: multifocal choroiditis mimicking ocular histoplasmosis syndrome
PURPOSE: The study aims to evaluate a series of patients with initial diagnosis of ocular histoplasmosis syndrome (OHS) with progression and response to treatments consistent with multifocal choroiditis (MFC).
METHODS: Retrospective review of nine patients referred for management of recurrent OHS lesions. Serology panel was conducted to rule out autoimmune and infectious causes.
RESULTS: Clinical examination revealed multiple small, punched-out peripheral chorioretinal scars, and peripapillary atrophy. Histoplasma antigen/antibody was negative in all patients. Fluorescein angiography and optical coherence tomography confirmed active inflammation in five patients. Immunomodulatory therapy (IMT) was initiated to control active inflammation. While on IMT, visual acuity stabilized or improved in three patients with no recurrence of CNV or lesion activities over the follow-up period.
CONCLUSIONS: MFC may initially masquerade as OHS. Clinical characteristics of recurrent MFC and absence of histoplasma titer may lead to consideration of IMT and other proper treatments for MFC
Comparison of time domain and spectral domain optical coherence tomography in measurement of macular thickness in macular edema secondary to diabetic retinopathy and retinal vein occlusion.
Purpose. To evaluate macular thickness, agreement, and intraclass repeatability in three optical coherence tomography (OCT) devices: the time domain (TD) Stratus OCT and two spectral domain (SD) OCTs, Spectralis and Cirrus SD-OCT, in eyes with macular edema secondary to diabetic retinopathy (DR) and retinal vein occlusion (VO). Methods. In a prospective observational study at a university-based retina practice, retinal thickness tomography was performed simultaneously for fifty-eight patients (91 eyes) with DR and VO employing a time domain and two spectral domain OCTs. Agreement in macular measurements was assessed by constructing Bland-Altman plots. Intraclass repeatability was assessed by intraclass correlation coefficients (ICCs). Results. Based on the Bland-Altman plots for central macular thickness, there was low agreement between the measurements of Cirrus SD-OCT and Stratus OCT, Spectralis OCT and Stratus OCT, as well as Spectralis OCT and Cirrus SD-OCT among DR and RVO patients. All three devices demonstrated high intraclass repeatability, with ICC of 98% for Stratus OCT, 97% for Cirrus SD-OCT, and 100% for Spectralis OCT among DR patients. The ICC was 97% for Stratus OCT, 79% for Cirrus SD-OCT, and 91% for Spectralis OCT among RVO patients. Conclusion. There are low agreements among interdevice measurements. However, intraclass repeatability is high in both TD and SD-OCT devices
Comparison of Time Domain and Spectral Domain Optical Coherence Tomography in Measurement of Macular Thickness in Macular Edema Secondary to Diabetic Retinopathy and Retinal Vein Occlusion
Purpose. To evaluate macular thickness, agreement, and intraclass repeatability in three optical coherence tomography (OCT) devices: the time domain (TD) Stratus OCT and two spectral domain (SD) OCTs, Spectralis and Cirrus SD-OCT, in eyes with macular edema secondary to diabetic retinopathy (DR) and retinal vein occlusion (VO). Methods. In a prospective observational study at a university-based retina practice, retinal thickness tomography was performed simultaneously for fifty-eight patients (91 eyes) with DR and VO employing a time domain and two spectral domain OCTs. Agreement in macular measurements was assessed by constructing Bland-Altman plots. Intraclass repeatability was assessed by intraclass correlation coefficients (ICCs). Results. Based on the Bland-Altman plots for central macular thickness, there was low agreement between the measurements of Cirrus SD-OCT and Stratus OCT, Spectralis OCT and Stratus OCT, as well as Spectralis OCT and Cirrus SD-OCT among DR and RVO patients. All three devices demonstrated high intraclass repeatability, with ICC of 98% for Stratus OCT, 97% for Cirrus SD-OCT, and 100% for Spectralis OCT among DR patients. The ICC was 97% for Stratus OCT, 79% for Cirrus SD-OCT, and 91% for Spectralis OCT among RVO patients. Conclusion. There are low agreements among interdevice measurements. However, intraclass repeatability is high in both TD and SD-OCT devices