6,399 research outputs found
Low cost TV based messaging for remote desert communities
In recent years telecommunications services in remote Australia have received considerable attention, with services for indigenous desert communities a key focus. This project, known as Desert Interactive Remote Television (DIRT), uses existing community rebroadcast TV infrastructure to provide low cost multimedia messaging services for remote desert communities. The system architecture, key applications, and field trial outcomes are described
Senior Leonard Hayes Wins National Piano Competition
Lawrence University’s Leonard Hayes, a senior from Dallas, Texas, won the recent Young Artists’ Division of the 2011 Tourgee Debose National Piano Competition conducted at Southern University in Baton Rouge, La.
This was Hayes’ second first-place showing in the competition having previously won the Tourgee Debose’s sophomore division in 2009.
Hayes received a first-place prize of $1,000 for his winning performance of Beethoven’s “Piano Sonata Op. 90,” Cesar Franck’s “Poco Allegro and Fugue” and two movements from George Walker’s “Piano Sonata No. 2.”
A third-place finisher in the 2010 National Association of Negro Musicians’ Piano Scholarship competition, Hayes studies in the piano studio of Catherine Kautsky
Targeted messages on TV screens in remote Indigenous communities
This paper describes a research project to enhance the viability of remote Indigenous communities through culturally-appropriate use of information and communications technologies (ICT). The project investigated the use of community rebroadcast TV infrastructure for new low cost communications services. A key part of the project was establishment of trusting relationships with the Ngaanyatjaara Lands communities of Irrunytju and Kanpa. Community members,administrative staff, and external service providers were involved in investigations into current communication problems and potential solutions. A working prototype of a messaging system using satellite broadcasting infrastructure to send multimedia messages to TV sets within remote communities was developed and evaluated. Such a system could be used by government agencies or remote communities themselves to deliver messages about visitors to the community (e.g.health workers), emergencies (e.g. bushfire); cultural business, sporting events, etc. The expected outcomes of such a system are increased social capital within the region, developed through more efficient and effective communication, leading to enhanced viability and sustainability of remote communities
Expression of fatty-acid-modifying enzymes in the halotolerant black yeast Aureobasidium pullulans (de Bary) G. Arnaud under salt stress
AbstractMultiple tolerance to stressful environmental conditions of the black, yeast-like fungus Aureobasidium pullulans is achieved through different adaptations, among which there is the restructuring of the lipid composition of their membranes. Here, we describe three novel genes encoding fatty-acid-modifying enzymes in A. pullulans, along with the levels of their mRNAs under different salinity conditions. High levels of Δ 9−desaturase and Δ12−desaturase mRNAs were seen at high salinities, which were consistent with an increased desaturation of the fatty acids in the cell membranes. Elevated levels of elongase mRNA were also detected. Surprisingly, increases in the levels of these mRNAs were also seen following hypo-osmotic shock, while hyperosmotic shock had exactly the opposite effect, demonstrating that data that are obtained from up-shift and down-shift salinity studies should be interpreted with caution
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
A smoother end to the dark ages
Independent lines of evidence suggest that the first stars, which ended the
cosmic dark ages, came in pairs, rather than singly. This could change the
prevailing view that the early Universe had a Swiss-cheese-like appearance.Comment: Nature News and Views, April 7, 201
A Family of Maximum Margin Criterion for Adaptive Learning
In recent years, pattern analysis plays an important role in data mining and
recognition, and many variants have been proposed to handle complicated
scenarios. In the literature, it has been quite familiar with high
dimensionality of data samples, but either such characteristics or large data
have become usual sense in real-world applications. In this work, an improved
maximum margin criterion (MMC) method is introduced firstly. With the new
definition of MMC, several variants of MMC, including random MMC, layered MMC,
2D^2 MMC, are designed to make adaptive learning applicable. Particularly, the
MMC network is developed to learn deep features of images in light of simple
deep networks. Experimental results on a diversity of data sets demonstrate the
discriminant ability of proposed MMC methods are compenent to be adopted in
complicated application scenarios.Comment: 14 page
Structure based development of novel specific inhibitors for cathepsin L and cathepsin S in vitro and in vivo
AbstractSpecific inhibitors for cathepsin L and cathepsin S have been developed with the help of computer-graphic modeling based on the stereo-structure. The common fragment, N-(L-trans-carbamoyloxyrane-2-carbonyl)-phenylalanine-dimethylamide, is required for specific inhibition of cathepsin L. Seven novel inhibitors of the cathepsin L inhibitor Katunuma (CLIK) specifically inhibited cathepsin L at a concentration of 10−7 M in vitro, while almost no inhibition of cathepsins B, C, S and K was observed. Four of the CLIKs are stable, and showed highly selective inhibition for hepatic cathepsin L in vivo. One of the CLIK inhibitors contains an aldehyde group, and specifically inhibits cathepsin S at 10−7 M in vitro
- …