719 research outputs found

    Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism

    Get PDF
    BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    Cathepsin K Null Mice Show Reduced Adiposity during the Rapid Accumulation of Fat Stores

    Get PDF
    Growing evidences indicate that proteases are implicated in adipogenesis and in the onset of obesity. We previously reported that the cysteine protease cathepsin K (ctsk) is overexpressed in the white adipose tissue (WAT) of obese individuals. We herein characterized the WAT and the metabolic phenotype of ctsk deficient animals (ctsk−/−). When the growth rate of ctsk−/− was compared to that of the wild type animals (WT), we could establish a time window (5–8 weeks of age) within which ctsk−/−display significantly lower body weight and WAT size as compared to WT. Such a difference was not observable in older mice. Upon treatment with high fat diet (HFD) for 12 weeks ctsk−/− gained significantly less weight than WT and showed reduced brown adipose tissue, liver mass and a lower percentage of body fat. Plasma triglycerides, cholesterol and leptin were significantly lower in HFD-fed-ctsk−/− as compared to HFD-fed WT animals. Adipocyte lipolysis rates were increased in both young and HFD-fed-ctsk−/−, as compared to WT. Carnitine palmitoyl transferase-1 activity, was higher in mitochondria isolated from the WAT of HFD treated ctsk−/− as compared to WT. Together, these data indicate that ctsk ablation in mice results in reduced body fat content under conditions requiring a rapid accumulation of fat stores. This observation could be partly explained by an increased release and/or utilization of FFA and by an augmented ratio of lipolysis/lipogenesis. These results also demonstrate that under a HFD, ctsk deficiency confers a partial resistance to the development of dyslipidemia

    Activity of the antiarrhythmic drug amiodarone against Leishmania (L.) infantum: an in vitro and in vivo approach

    Get PDF
    <div><p>Abstract Background: Considering the high toxicity and limited therapies available for treating visceral leishmaniasis (VL), the drug repositioning approach represents a faster way to deliver new therapies to the market. Methods: In this study, we described for the first time the activity of a potent antiarrhythmic, amiodarone (AMD), against L. (L.)infantum and its in vitro and in vivo activity. Results: The evaluation against promastigotes has shown that amiodarone presents leishmanicidal effect against the extracellular form, with an IC50 value of 10 μM. The activity was even greater against amastigotes in comparison with promastigotes with an IC50 value of 0.5 μM. The selectivity index in relation to the intracellular form demonstrated that the antiparasitic activity was approximately 56 times higher than its toxicity to mammalian cells. Investigation of the in vivo AMD activity in the L. infantum-infected hamster model showed that 51 days after the initial infection, amiodarone was unable to reduce the parasite burden in the spleen and liver when treated for 10 consecutive days, intraperitoneally, at 50 mg/kg/day, as determined by qPCR. Although not statistically significant, AMD was able to reduce the parasite burden by 20% in the liver when treated for 10 consecutive days, orally, at 100 mg/kg/day; no reduction in the spleen was found by qPCR. Conclusions: Our findings may help further drug design studies seeking new AMD derivatives that may provide new candidates with an in vitro selectivity close to or even greater than that observed in the prototype delivering effectiveness in the experimental model of VL.</p></div

    Use of imaging biomarkers to assess perfusion and glucose metabolism in the skeletal muscle of dystrophic mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is a severe neuromuscular disease that affects 1 in 3500 boys. The disease is characterized by progressive muscle degeneration that results from mutations in or loss of the cytoskeletal protein, dystrophin, from the glycoprotein membrane complex, thus increasing the susceptibility of contractile muscle to injury. To date, disease progression is typically assessed using invasive techniques such as muscle biopsies, and while there are recent reports of the use of magnetic resonance, ultrasound and optical imaging technologies to address the issue of disease progression and monitoring therapeutic intervention in dystrophic mice, our study aims to validate the use of imaging biomarkers (muscle perfusion and metabolism) in a longitudinal assessment of skeletal muscle degeneration/regeneration in two murine models of muscular dystrophy.</p> <p>Methods</p> <p>Wild-type (w.t.) and dystrophic mice (weakly-affected mdx mice that are characterized by a point mutation in dystrophin; severely-affected mdx:utrn-/- (udx) mice that lack functional dystrophin and are null for utrophin) were exercised three times a week for 30 minutes. To follow the progression of DMD, accumulation of <sup>18 </sup>F-FDG, a measure of glucose metabolism, in both wild-type and affected mice was measured with a small animal PET scanner (GE eXplore Vista). To assess changes in blood flow and blood volume in the hind limb skeletal muscle, mice were injected intravenously with a CT contrast agent, and imaged with a small animal CT scanner (GE eXplore Ultra).</p> <p>Results</p> <p>In hind limb skeletal muscle of both weakly-affected mdx mice and in severely-affected udx mice, we demonstrate an early, transient increase in both <sup>18</sup>F-FDG uptake, and in blood flow and blood volume. Histological analysis of H&E-stained tissue collected from parallel littermates demonstrates the presence of both inflammatory infiltrate and centrally-located nuclei, a classic hallmark of myofibrillar regeneration. In both groups of affected mice, the early transient response was succeeded by a progressive decline in muscle perfusion and metabolism; this was also evidenced histologically.</p> <p>Conclusions</p> <p>The present study demonstrates the utility of non-invasive imaging biomarkers in characterizing muscle degeneration/regeneration in murine models of DMD. These techniques may now provide a promising alternative for assessing both disease progression and the efficacy of new therapeutic treatments in patients.</p

    Phantom headache: pain-memory-emotion hypothesis for chronic daily headache?

    Get PDF
    The neurobiology of chronic pain, including chronic daily headache (CDH) is not completely understood. “Pain memory” hypothesis is one of the mechanisms for phantom limb pain. We reviewed the literature to delineate a relation of “pain memory” for the development of CDH. There is a direct relation of pain to memory. Patients with poor memory have less chance to develop “pain memory”, hence less possibility to develop chronic pain. Progressive memory impairment may lead to decline in headache prevalence. A similar relation of pain is also noted with emotional or psychiatric symptoms. Literature review suggests that there is marked overlap in the neural network of pain to that of memory and emotions. We speculate that pain, memory, and emotions are interrelated in triangular pattern, and each of these three is related to other two in bidirectional pattern, i.e., stimulation of one of these will stimulate other symptoms/networks and vice versa (triangular theory for chronic pain). Longstanding or recurrent noxious stimuli will strengthen this interrelation, and this may be responsible for chronicity of pain. Reduction of both chronic pain and psychological symptoms by cognitive behavioral therapy or psychological interventions further suggests a bidirectional interrelation between pain and emotion. Longitudinal studies are warranted on the prevalence of headache and other painful conditions in patients with progressive memory impairment to delineate the relation of pain to memory. Interrelation of headache to emotional symptoms should also be explored

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Lung Epithelial Injury by B. Anthracis Lethal Toxin Is Caused by MKK-Dependent Loss of Cytoskeletal Integrity

    Get PDF
    Bacillus anthracis lethal toxin (LT) is a key virulence factor of anthrax and contributes significantly to the in vivo pathology. The enzymatically active component is a Zn2+-dependent metalloprotease that cleaves most isoforms of mitogen-activated protein kinase kinases (MKKs). Using ex vivo differentiated human lung epithelium we report that LT destroys lung epithelial barrier function and wound healing responses by immobilizing the actin and microtubule network. Long-term exposure to the toxin generated a unique cellular phenotype characterized by increased actin filament assembly, microtubule stabilization, and changes in junction complexes and focal adhesions. LT-exposed cells displayed randomly oriented, highly dynamic protrusions, polarization defects and impaired cell migration. Reconstitution of MAPK pathways revealed that this LT-induced phenotype was primarily dependent on the coordinated loss of MKK1 and MKK2 signaling. Thus, MKKs control fundamental aspects of cytoskeletal dynamics and cell motility. Even though LT disabled repair mechanisms, agents such as keratinocyte growth factor or dexamethasone improved epithelial barrier integrity by reducing cell death. These results suggest that co-administration of anti-cytotoxic drugs may be of benefit when treating inhalational anthrax
    corecore