48 research outputs found

    Slow light enabled wavelength demultiplexing

    Get PDF
    Photonic crystal waveguides supporting band gap guided modes hold great potential to tailor the group velocity of propagating light. We propose and explore different wavelength demultiplexer design approaches that utilize slow light concept. By altering the dielectric filling factors of each waveguide segment, one can show that different frequencies can be separated and extracted at different locations along the cascaded waveguide. Furthermore, to eliminate the inherent reflection loss of such a design, a composite structure involving a tapered waveguide with a side-coupled resonator is also presented. Such a structure features not only a forward propagating wave but also a backward propagating wave acting as a feedback mechanism for the drop channels. We show that by careful design of the waveguide and the resonator, the destructive and instructive interference of these waves can effectively eliminate the reflection loss and increase the coupling efficiency, respectively. Numerical and experimental verification of the proposed structures show that the targeted frequencies can be coupled out with low cross-talks and moderate quality factors, while maintaining a compact size. © 2016 IEEE.Peer ReviewedPostprint (published version

    Analytical, numerical, and experimental investigation of a Luneburg lens system for directional cloaking

    Get PDF
    In this study, the design of a directional cloaking based on the Luneburg lens system is proposed and its operating principle is experimentally verified. The cloaking concept is analytically investigated via geometrical optics and numerically realized with the help of the finite-difference time-domain method. In order to benefit from its unique focusing and/or collimating characteristics of light, the Luneburg lens is used. We show that by the proper combination of Luneburg lenses in an array form, incident light bypasses the region between junctions of the lenses, i.e., the "dark zone." Hence, direct interaction of an object with propagating light is prevented if one places the object to be cloaked inside that dark zone. This effect is used for hiding an object which is made of a perfectly electric conductor material. In order to design an implementable cloaking device, the Luneburg lens is discretized into a photonic crystal structure having gradually varying air cylindrical holes in a dielectric material by using Maxwell Garnett effective medium approximations. Experimental verifications of the designed cloaking structure are performed at microwave frequencies of around 8 GHz. The proposed structure is fabricated by three-dimensional printing of dielectric polylactide material and a brass metallic alloy is utilized in place of the perfectly electric conductor material in microwave experiments. Good agreement between numerical and experimental results is found. © 2019 American Physical Society

    Design of flat lens-like graded index medium by photonic crystals: Exploring both low and high frequency regimes

    No full text
    In this manuscript, we propose the design of an inhomogeneous artificially created graded index (GRIN) medium to enrich the optical device functionalities of light by using periodic all-dielectric materials. Continuous GRIN profile with hyperbolic secant indexdistribution is approximated using two-dimensional photonic crystal (2D PC) dielectric rods with a fixed refractive index. The locations of each individual cell that contain dielectric rods of certain radii are determined based on the results of the frequency domain analysis. The desired index distribution is attained at long wavelengths using dispersion engineering approach. The frequency response of the transmission spectrum exhibits high transmission windows appearing at both larger and smaller wavelengths regions. Two regions are separated by a local band gap that blocks the incident light for a certain frequency interval. Light manipulation characteristics such as focusing, de-focusing and collimation are systematically and quantitatively compared for artificially designed GRIN medium within lowand high frequency regimes. We show different field manipulation capabilities and focal point movement dynamics of the GRIN medium by special adjustment of the length of the structure. In addition, an analytical formulation based on ray theory is derived to investigate the focusing, de-focusing and collimation properties of proposed GRIN medium. The analytical approach utilizes Ray theory and computational tools are based on plane wave expansion and finite-difference time-domain methods. Implementing the GRIN medium by periodic optical materials provides frequency selectivity and strong focusing effects at higher frequency region. The designed structure can be used in integrated nanophotonics as a compact optical element with flat surfaces. © 2014 Elsevier B.V. All rights reserved

    Reduced symmetry and analogy to chirality in periodic dielectric media

    Get PDF
    Much attention has been paid to photonic applications based on periodic media. Meanwhile, quasi-periodic and disordered mediahave extended the research domain and provided additional novelties for manipulating and controlling light propagation. This review article attempts to highlight the benefits of symmetry reduction in highly symmetric periodic photonic media, and applies the concept of chirality to all-dielectric materials arranged in special orders. Two-dimensional periodic structures known as photonic crystals (PCs) are highly symmetric in terms of structural patterns, due to the lattice types and shape of the elements occupying the PC unit-cell. We propose the idea of intentionally introducing reduced-symmetry, to search for anomalous optical characteristics so that these types of PCs can be used in the design of novel optical devices. Breaking either translational or rotational symmetries of PCs provides enhanced and additional optical characteristics such as creation of a complete photonic bandgap, wavelength demultiplexing, super-collimation, tilted self-collimation, and beam deflecting/routing properties. Utilizing these characteristics allows the design of several types of photonic devices such as polarization-independent waveguides, wavelength demultiplexers, beam deflectors, and routers. Moreover, reducing the symmetry in the PC unit-cell scale produces a novel feature in all-dielectric PCs that is known as chirality. On the basis of above considerations, it is expected that low-symmetric PCs can be considered as a potential structure in photonic device applications, due to the rich inherent optical properties, providing broadband operation, and being free of absorption losses. © 2014, European Optical Society (EOS). All rights reserved

    Non-diffraction bloch modes in low-symmetric photonic crystals

    No full text
    The European Conference on Lasers and Electro-Optics (2017 : Munich; Germany)[No abstract available

    Rainbow trapping in a tapered photonic crystal waveguide and its application in wavelength demultiplexing effect

    No full text
    In this paper, we present the numerical and experimental demonstration of a wavelength demultiplexer (WDM) based on the photonic crystal (PC), in which the waveguide has a tapered width. Owing to the tapered waveguide, propagating light can be slowed down and be trapped by a local mode gap effect at certain distances from the entrance of the waveguide. The corresponding effect leads to the localization of four different wavelengths at different points inside the waveguide. The drop-channels are introduced at these specified locations to separate selected wavelengths. Here, we utilized an optimization algorithm to enhance the coupling efficiencies of the introduced drop-channels. The presented WDM PC separates the wavelengths of 22.29, 21.63, 20.80, and 19.87 mm (13.46, 13.87, 14.42, and 15.10 GHz, respectively) into different drop-channels with coupling efficiencies at around 80%. Experimental verifications of the numerically presented results are realized at the microwave frequency regime where the coupling efficiencies of each drop-channel are measured as around 75%. The designed WDM PC structure is all dielectric, compact, and efficient, and it exhibits low cross talk between drop-channels. Experimental measurements show a rainbow-trapping phenomenon and verify the simulation results of wavelength demultiplexing design with the margin of error between 0.8% and 1% frequency shifts in peak transmission values. © 2020 Optical Society of Americ
    corecore