25 research outputs found

    Short-pulse, extreme-ultraviolet continuum emission from a table-top laser plasma light source

    Get PDF
    We have observed extreme-ultraviolet (XUV) “line-free” continuum emission from laser plasmas of high atomic number elements using targets irradiated with 248 nm laser pulses of 7 ps duration at a power density of ∼ 1013 W/cm2. Using both dispersive spectroscopy and streak camera detection, the spectral and temporal evolution of XUV continuum emission for several target atomic numbers has been measured on a time scale with an upper limit of several hundred picoseconds limited by amplified spontaneous emission

    Generation and application of x-rays from excimer laser produced plasmas

    Full text link
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN022900 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Borane (B m H n ), Hydrogen rich, Proton Boron fusion fuel materials for high yield laser-driven Alpha sources

    Full text link
    We propose for the first time, a new fuel-material for laser-driven Proton Boron (P-B) fusion nuclear reactions. We propose, Hydrogen rich, Borane (B m H n ) materials as fusion fuel as compared to Boron Nitride (BN) presently used. We estimate more than 10-fold increase in the yield of nuclear fusion reactions, and Alpha-prticle flux, when, for example Ammonia Borane (BNH6) laser-target material will be used compared to the state of the art normalized flux ∼108 Alphas/sr/J from BN targets. BNH6 contains ∼1000× higher concentration of Hydrogen compared to BN. We report the manufacture of the first solid-pellets Ammonia Borane laser-targets. To obtain high Flux Alpha sources from repetitive lasers we propose new BNH6 target geometries: liquid (molten) droplets/jets; or translated tape- or disc-targets coated with BNH6 powder. Targets would be irradiated in low pressure, ambient buffer gas. To enhance the fusion/Alpha yield of ultra-high intensity PetaWatt laser-target interaction we propose nano- and micro-structured Borane targets. As applications, we propose to use the Alpha-driven nuclear reactions inside the laser-driven Borane targets for new schemes to produce short-lived medical radioisotopes. Such laser-driven radioisotope beamlines would be installed directly in hospitals. Borane materials, like Diborane (6), B2H6, are also proposed as nuclear-fuels for laser-driven Proton-Boron fusion energy generation. The high dilution of Boron in Hydrgen B/H = 33% would need to be further enahnced to B/H < 15% to cut radiation losses from the hot and dense fusion pellet

    Laser-based acceleration for nuclear physics experiments at ELI-NP

    Full text link
    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure − Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments

    Laser-based acceleration for nuclear physics experiments at ELI-NP

    Full text link
    As part of the Extreme Light pan-European research infrastructure, Extreme Light Infrastructure − Nuclear Physics (ELI-NP) in Romania will focus on topics in Nuclear Physics, fundamental Physics and applications, based on very intense photon beams. Laser-based acceleration of electrons, protons and heavy ions is a prerequisite for a multitude of laser-driven nuclear physics experiments already proposed by the international research community. A total of six outputs of the dual-amplification chain laser system, two of 100TW, two of 1PW and two of 10PW will be employed in 5 experimental areas, with the possibility to use long and short focal lengths, gas and solid targets, reaching the whole range of laser acceleration processes. We describe the main techniques and expectations regarding the acceleration of electrons, protons and heavy nuclei at ELI-NP, and some physics cases for which these techniques play an important role in the experiments

    On the recollision-free excitation of krypton during ultrafast multi-electron tunnel ionization

    Full text link
    The probability of multiple ionization of krypton by 50 femtosecond circularly polarized laser pulses, independent of the optical focal geometry, has been obtained for the first time. The excellent agreement over the intensity range 10 TWcm-2 to 10 PWcm-2 with the recent predictions of A. S. Kornev et al [Phys. Rev. A v.68, art.043414 (2003)] provides the first experimental confirmation that non-recollisional electronic excitation can occur in strong field ionization. This is particularly true for higher stages of ionization, when the laser intensity exceeds 1 PWcm-2 as the energetic departure of the ionized electron(s) diabatically distorts the wavefunctions of the bound electrons. By scaling the probability of ionization by the focal volume, we discusses why this mechanism was not apparent in previous studies.Comment: 8 pages, 4 figures, submitted to J. Phys. B: At. Mol. Opt. Phys. on 16/12/05, for inclusion in Special Edition forming the Proceedings of the 10th International Conference on Multiphoton Processes (ICOMP), Orford, Quebec, Canada 9th - 14th October 200
    corecore