8 research outputs found
Recommended from our members
SARS-CoV-2 Serology Across Scales: A Framework for Unbiased Estimation of Cumulative Incidence Incorporating Antibody Kinetics and Epidemic Recency.
Serosurveys are a key resource for measuring severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) population exposure. A growing body of evidence suggests that asymptomatic and mild infections (together making up over 95% of all infections) are associated with lower antibody titers than severe infections. Antibody levels also peak a few weeks after infection and decay gradually. We developed a statistical approach to produce estimates of cumulative incidence from raw seroprevalence survey results that account for these sources of spectrum bias. We incorporate data on antibody responses on multiple assays from a postinfection longitudinal cohort, along with epidemic time series to account for the timing of a serosurvey relative to how recently individuals may have been infected. We applied this method to produce estimates of cumulative incidence from 5 large-scale SARS-CoV-2 serosurveys across different settings and study designs. We identified substantial differences between raw seroprevalence and cumulative incidence of over 2-fold in the results of some surveys, and we provide a tool for practitioners to generate cumulative incidence estimates with preset or custom parameter values. While unprecedented efforts have been launched to generate SARS-CoV-2 seroprevalence estimates over this past year, interpretation of results from these studies requires properly accounting for both population-level epidemiologic context and individual-level immune dynamics
Using sero-epidemiology to monitor disparities in vaccination and infection with SARS-CoV-2.
As SARS-CoV-2 continues to spread and vaccines are rolled-out, the "double burden" of disparities in exposure and vaccination intersect to determine patterns of infection, immunity, and mortality. Serology provides a unique opportunity to measure prior infection and vaccination simultaneously. Leveraging algorithmically-selected residual sera from two hospital networks in the city of San Francisco, cross-sectional samples from 1,014 individuals from February 4-17, 2021 were each tested on two assays (Ortho Clinical Diagnostics VITROS Anti-SARS-CoV-2 and Roche Elecsys Anti-SARS-CoV-2), capturing the first year of the epidemic and early roll-out of vaccination. We estimated, using Bayesian estimation of infection and vaccination, that infection risk of Hispanic/Latinx residents was five times greater than of White residents aged 18-64 (95% Credible Interval (CrI): 3.2-10.3), and that White residents over 65 were twice as likely to be vaccinated as Black/African American residents (95% CrI: 1.1-4.6). We found that socioeconomically-deprived zipcodes had higher infection probabilities and lower vaccination coverage than wealthier zipcodes. While vaccination has created a 'light at the end of the tunnel' for this pandemic, ongoing challenges in achieving and maintaining equity must also be considered
Recommended from our members
Universal Polymerase Chain Reaction and Antibody Testing Demonstrate Little to No Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in a Rural Community.
BackgroundLimited systematic surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the early months of the US epidemic curtailed accurate appraisal of transmission intensity. Our objective was to perform case detection of an entire rural community to quantify SARS-CoV-2 transmission using polymerase chain reaction (PCR) and antibody testing.MethodsWe conducted a cross-sectional survey of SARS-CoV-2 infection in the rural town of Bolinas, California (population 1620), 4 weeks after shelter-in-place orders. Participants were tested between April 20 and 24, 2020. Prevalence by PCR and seroprevalence from 2 forms of antibody testing were performed in parallel (Abbott ARCHITECT immunoglobulin [Ig]G and in-house IgG enzyme-linked immunosorbent assay).ResultsOf 1891 participants, 1312 were confirmed Bolinas residents (>80% community ascertainment). Zero participants were PCR positive. Assuming 80% sensitivity, it would have been unlikely to observe these results (P < .05) if there were >3 active infections in the community. Based on antibody results, estimated prevalence of prior infection was 0.16% (95% credible interval [CrI], 0.02%-0.46%). The positive predictive value (PPV) of a positive result on both tests was 99.11% (95% CrI, 95.75%-99.94%), compared with PPV 44.19%-63.32% (95% CrI, 3.25%-98.64%) if 1 test was utilized.ConclusionsFour weeks after shelter-in-place, SARS-CoV-2 infection in a rural Northern California community was extremely rare. In this low-prevalence setting, use of 2 antibody tests increased seroprevalence estimate precision. This was one of the first community-wide studies to successfully implement synchronous PCR and antibody testing, particularly in a rural setting. Widespread testing remains an underpinning of effective disease control in conjunction with consistent uptake of public health measures
Recommended from our members
Universal Polymerase Chain Reaction and Antibody Testing Demonstrate Little to No Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in a Rural Community.
BackgroundLimited systematic surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the early months of the US epidemic curtailed accurate appraisal of transmission intensity. Our objective was to perform case detection of an entire rural community to quantify SARS-CoV-2 transmission using polymerase chain reaction (PCR) and antibody testing.MethodsWe conducted a cross-sectional survey of SARS-CoV-2 infection in the rural town of Bolinas, California (population 1620), 4 weeks after shelter-in-place orders. Participants were tested between April 20 and 24, 2020. Prevalence by PCR and seroprevalence from 2 forms of antibody testing were performed in parallel (Abbott ARCHITECT immunoglobulin [Ig]G and in-house IgG enzyme-linked immunosorbent assay).ResultsOf 1891 participants, 1312 were confirmed Bolinas residents (>80% community ascertainment). Zero participants were PCR positive. Assuming 80% sensitivity, it would have been unlikely to observe these results (P < .05) if there were >3 active infections in the community. Based on antibody results, estimated prevalence of prior infection was 0.16% (95% credible interval [CrI], 0.02%-0.46%). The positive predictive value (PPV) of a positive result on both tests was 99.11% (95% CrI, 95.75%-99.94%), compared with PPV 44.19%-63.32% (95% CrI, 3.25%-98.64%) if 1 test was utilized.ConclusionsFour weeks after shelter-in-place, SARS-CoV-2 infection in a rural Northern California community was extremely rare. In this low-prevalence setting, use of 2 antibody tests increased seroprevalence estimate precision. This was one of the first community-wide studies to successfully implement synchronous PCR and antibody testing, particularly in a rural setting. Widespread testing remains an underpinning of effective disease control in conjunction with consistent uptake of public health measures
Recommended from our members
Engineering luminescent biosensors for point-of-care SARS-CoV-2 antibody detection
Current serology tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies mainly take the form of enzyme-linked immunosorbent assays, chemiluminescent microparticle immunoassays or lateral flow assays, which are either laborious, expensive or lacking sufficient sensitivity and scalability. Here we present the development and validation of a rapid, low-cost, solution-based assay to detect antibodies in serum, plasma, whole blood and to a lesser extent saliva, using rationally designed split luciferase antibody biosensors. This new assay, which generates quantitative results in 30 min, substantially reduces the complexity and improves the scalability of coronavirus disease 2019 (COVID-19) antibody tests. This assay is well-suited for point-of-care, broad population testing, and applications in low-resource settings, for monitoring host humoral responses to vaccination or viral infection
Citywide serosurveillance of the initial SARS-CoV-2 outbreak in San Francisco using electronic health records.
Serosurveillance provides a unique opportunity to quantify the proportion of the population that has been exposed to pathogens. Here, we developed and piloted Serosurveillance for Continuous, ActionabLe Epidemiologic Intelligence of Transmission (SCALE-IT), a platform through which we systematically tested remnant samples from routine blood draws in two major hospital networks in San Francisco for SARS-CoV-2 antibodies during the early months of the pandemic. Importantly, SCALE-IT allows for algorithmic sample selection and rich data on covariates by leveraging electronic health record data. We estimated overall seroprevalence at 4.2%, corresponding to a case ascertainment rate of only 4.9%, and identified important heterogeneities by neighborhood, homelessness status, and race/ethnicity. Neighborhood seroprevalence estimates from SCALE-IT were comparable to local community-based surveys, while providing results encompassing the entire city that have been previously unavailable. Leveraging this hybrid serosurveillance approach has strong potential for application beyond this local context and for diseases other than SARS-CoV-2
Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms.
We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses, soluble markers of inflammation, and antibody levels and neutralization capacity longitudinally in 70 individuals with PCR-confirmed SARS-CoV-2 infection. Participants represent a spectrum of illness and recovery, including some with persistent viral shedding in saliva and many experiencing post-acute sequelae of SARS-CoV-2 infection (PASC). T cell responses remain stable for up to 9 months. Whereas the magnitude of early CD4+ T cell immune responses correlates with severity of initial infection, pre-existing lung disease is independently associated with higher long-term SARS-CoV-2-specific CD8+ T cell responses. Among participants with PASC 4 months following coronavirus disease 2019 (COVID-19) symptom onset, we observe a lower frequency of CD8+ T cells expressing CD107a, a marker of degranulation, in response to Nucleocapsid (N) peptide pool stimulation, and a more rapid decline in the frequency of N-specific interferon-Îł-producing CD8+ T cells. Neutralizing antibody levels strongly correlate with SARS-CoV-2-specific CD4+ T cell responses
SARS-CoV-2 antibody magnitude and detectability are driven by disease severity, timing, and assay.
Interpretation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serosurveillance studies is limited by poorly defined performance of antibody assays over time in individuals with different clinical presentations. We measured antibody responses in plasma samples from 128 individuals over 160 days using 14 assays. We found a consistent and strong effect of disease severity on antibody magnitude, driven by fever, cough, hospitalization, and oxygen requirement. Responses to spike protein versus nucleocapsid had consistently higher correlation with neutralization. Assays varied substantially in sensitivity during early convalescence and time to seroreversion. Variability was dramatic for individuals with mild infection, who had consistently lower antibody titers, with sensitivities at 6 months ranging from 33 to 98% for commercial assays. Thus, the ability to detect previous infection by SARS-CoV-2 is highly dependent on infection severity, timing, and the assay used. These findings have important implications for the design and interpretation of SARS-CoV-2 serosurveillance studies