2 research outputs found

    Evidence for positive selection on Drosophila melanogaster seminal fluid protease homologs

    No full text
    Proteins present in the seminal fluid of Drosophila melanogaster (accessory gland proteins Acps) contribute to female postmating behavioral changes, sperm storage, sperm competition, and immunity. Consequently, male-female coevolution and host-pathogen interactions are thought to underlie the rapid, adaptive evolution that characterizes several Acp-encoding genes. We propose that seminal fluid proteases are likely targets of selection due to their demonstrated or potential roles in between-sex interactions and immune processes. We use within- and between-species sequence data for 5 predicted protease-encoding Acp loci to test this hypothesis. Our polymorphism-based analyses find evidence for positive selection at 2 genes, both of which encode predicted serine protease homologs. One of these genes, CG6069, also shows evidence for consistent selection on a subset of codons over a deeper evolutionary time scale. The second gene, CG9997, was previously shown to be essential for normal sperm usage, suggesting that sexual selection may underlie its history of adaptation

    Temporally variable selection on proteolysis-related reproductive tract proteins in Drosophila

    No full text
    In order to gain further insight into the processes underlying rapid reproductive protein evolution, we have conducted a population genetic survey of 44 reproductive tract-expressed proteases, protease inhibitors, and targets of proteolysis in Drosophila melanogaster and Drosophila simulans. Our findings suggest that positive selection on this group of genes is temporally heterogeneous, with different patterns of selection inferred using tests sensitive at different time scales. Such variation in the strength and targets of selection through time may be expected under models of sexual conflict and/or host-pathogen interaction. Moreover, available functional information concerning the genes that show evidence of selection suggests that both sexual selection and immune processes have been important in the evolutionary history of this group of molecules
    corecore