3 research outputs found

    A Technological System for Using Waste Warm Water from Energy Facilities for Effective Agriculture

    No full text
    The waste warm waters from power plants, owing to their temperature regime (25–38°C) and the volumes of discharge, allow for their use for heating of open ground areas in agriculture. Underground heating by such water is a new, special heat and irrigation method which enables not only purposeful regulation of temperature conditions of the crop growing environment, but also dissipates heat in the soil, thus cooling the water for its reuse. This makes it possible to reduce the thermal pollution of water sources

    The efficiency of waste hot water utilisation to improve the temperature conditions for growing plants

    No full text
    One of the rational ways of energy saving is to use the heat of wastewater from energy companies for open ground heating and cultivation crops. The most significant sources of heat are thermal and nuclear power plants that produce low-thermal waters of 28-35°C. Heating of the ground with the use of circulating warm water allows to increase temperature at all points of the soil profile. The maximum thermal effect from heating ground is observed at the depth of pipe heaters (7.3- 11.1°C). Ground heating allows to extend the growing season for crops by 3-4 weeks, which can expedite harvesting and thus maximise the harvest. In natural moisture conditions, ground heating does not lead to significant reduction of moisture reserves in the active layer throughout the growing period. There is a redistribution of moisture in a soil profile. It decreases in the zone of pipe heaters and redistributes toward the top. The formation of the nutrient regime changes, the content of mobile phosphorus and potassium, and nitrate nitrogen increases, whereas the content of ammonia nitrogen is reduced. Ground heating is a new special heat reclamation technique. It allows not only to control temperature of the agricultural crop environment, but also to dissipate heat in the ground, and promote the utilisation of waste heat and the stabilisation of the environment

    Ecological Efficiency Evaluation of Water Regulation of Drained Land in Changing Climatic Conditions

    No full text
    In view of global climate changes, the study of the ecological feasibility of hydromelioration systems and their impact on the natural environment is extremely relevant. Evaluation of the ecological effectiveness of water regulation of drained land for current and forecasted climatic conditions was performed by determining the environmental reliability coefficient, which characterizes the ecological reliability of a reclamation project. The environmental reliability coefficient was determined on the basis of a certain set of physical indicators. The set of physical indicators reflects the extremely complex nature of the formation of water and general natural and ameliorative regimes of reclaimed land as a whole in changing natural, climatic and agro-ameliorative conditions of real objects. Their determining is based on the implementation of a machine experiment based on a complex of predictive and simulation models for water regulation of drained land on a long-term basis. The obtained results showed that ecologically optimal natural, ameliorative and soil regimes of the drained land, subject to compliance with the restrictions , are ensured by the application of humidifying sluicing. At the same time, the environmental reliability coefficients are 0.59 and 0.58, respectively, for current and forecast climatic conditions, and the level of ecological reliability of applying humidification to drained land is sufficiently high. The carried out evaluation of ecological reliability of water regulation of drained land confirms the need to increase the role of humidification as a component of effective adaptive measures on drained land in modern and forecasted climatic conditions. Humidifying measures have a decisive influence on the ecological effect and the ecological and amelioration state of drained land
    corecore