291 research outputs found

    Hypoxia up-regulates SERPINB3 through HIF-2\u3b1 in human liver cancer cells.

    Get PDF
    SERPINB3 is a cysteine-proteases inhibitor up-regulated in a significant number of cirrhotic patients carrying hepatocellular carcinoma (HCC) and recently proposed as a prognostic marker for HCC early recurrence. SERPINB3 has been reported to stimulate proliferation, inhibit apoptosis and, similar to what reported for hypoxia, to trigger epithelial-to-mesenchymal transition (EMT) and increased invasiveness in liver cancer cells. This study has investigated whether SERPINB3 expression is regulated by hypoxia-related mechanisms in liver cancer cells. Exposure of HepG2 and Huh7 cells to hypoxia up-regulated SERPINB3 transcription, protein synthesis and release in the extracellular medium. Hypoxia-dependent SERPINB3 up-regulation was selective (no change detected for SERPINB4) and operated through hypoxia inducible factor (HIF)-2\u3b1 (not HIF-1\u3b1) binding to SERPINB3 promoter, as confirmed by chromatin immuno-precipitation assay and silencing experiments employing specific siRNAs. HIF-2\u3b1-mediated SERPINB3 up-regulation under hypoxic conditions required intracellular generation of ROS. Immuno-histochemistry (IHC) and transcript analysis, performed in human HCC specimens, revealed co-localization of the two proteins in liver cancer cells and the existence of a positive correlation between HIF-2\u3b1 and SERPINB3 transcript levels, respectively. Hypoxia, through HIF-2\u3b1-dependent and redox-sensitive mechanisms, up-regulates the transcription, synthesis and release of SERPINB3, a molecule with a high oncogenic potential

    α1-Antitrypsin Polymerizes in Alveolar Macrophages of Smokers With and Without α1-Antitrypsin Deficiency

    Get PDF
    BACKGROUND: The deficiency of α1-antitrypsin (AAT) is secondary to misfolding and polymerization of the abnormal Z-AAT in liver cells and is associated with lung emphysema. Alveolar macrophages (AM) produce AAT, however it is not known if Z-AAT can polymerize in AM, further decreasing lung AAT and promoting lung inflammation. AIMS: To investigate if AAT polymerizes in human AM and to study the possible relation between polymerization and degree of lung inflammation. METHODS: Immunohistochemical analysis with 2C1 monoclonal antibody specific for polymerized AAT was performed in sections of: 9 lungs from individuals with AAT deficiency (AATD) and severe COPD, 35 smokers with normal AAT levels of which 24 with severe COPD and 11 without COPD, and 13 non-smokers. AM positive for AAT polymers were counted and expressed as percentage of total AM in lung. RESULTS: AAT polymerization was detected in [27(4-67)%] of AM from individuals with AATD but also in AM from smokers with normal AAT with [24(0-70)%] and without [24(0-60)%] COPD, but not in AM from non-smokers [0(0-1.5)%] (p<0.0001). The percentage of AM with polymerized AAT correlated with pack-years smoked (r=0.53,p=0.0001), FEV1/FVC (r=-0.41,p=0.005), Small Airways Disease (r=0.44,p=0.004), number of CD8+T-cells and neutrophils in alveolar walls (r=0.51,p=0.002; r=0.31,p=0.05 respectively). CONCLUSIONS: Polymerization of AAT in alveolar macrophages occurs in lungs of individuals with AATD but also in smokers with normal AAT levels with or without COPD. Our findings highlight the similarities in the pathophysiology of COPD in individuals with and without AATD, adding a potentially important step to the mechanism of COPD

    Low-blood lymphocyte number and lymphocyte decline as key factors in COPD outcomes: a longitudinal cohort study

    Get PDF
    Background: Smokers with and without chronic obstructive pulmonary disease (COPD) are at risk of severe outcomes like exacerbations, cancer, respiratory failure, and decreased survival. The mechanisms for these outcomes are unclear; however, there is evidence that blood lymphocytes (BL) number might play a role. Objective: The objective of this study is to investigate the relationship between BL and their possible decline over time with long-term outcomes in smokers with and without COPD. Methods: In 511 smokers, 302 with COPD (COPD) and 209 without COPD (noCOPD), followed long term, we investigated whether BL number and BL decline over time might be associated with long-term outcomes. Smokers were divided according to BL number in high-BL (=1, 800 cells/µL) and low-BL (<1, 800 cells/µL). Clinical features, cancer incidence, and mortality were recorded during follow-up. BL count in multiple samples and BL decline over time were calculated and related to outcomes. Results: BL count was lower in COPD (1, 880 cells/µL) than noCOPD (2, 300 cells/µL; p < 0.001). 43% of COPD and 23% of noCOPD had low-BL count (p < 0.001). BL decline over time was higher in COPD than noCOPD (p = 0.040). 22.5% of the whole cohort developed cancer which incidence was higher in low-BL subjects and in BL decliners than high-BL (31 vs. 18%; p = 0.001) and no decliners (32 vs. 19%; p = 0.002). 26% in the cohort died during follow-up. Furthermore, low-BL count, BL decline, and age were independent risk factors for mortality by Cox regression analysis. Conclusion: BL count and BL decline are related to worse outcomes in smokers with and without COPD, which suggests that BL count and decline might play a mechanistic role in outcomes deterioration. Insights into mechanisms inducing the fall in BL count could improve the understanding of COPD pathogenesis and point toward new therapeutic measures

    Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We have previously shown that NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells are reduced in both numbers and cytotoxicity in peripheral blood. The aim of the present study was to investigate their numbers and function within induced sputum.</p> <p>Methods</p> <p>Induced sputum cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD56<sup>+ </sup>cells (NK and NKT-like cells) were used in an LDH release assay to determine cytotoxicity.</p> <p>Results</p> <p>The proportion of NK cells and NKT-like cells in smokers with COPD (COPD subjects) was significantly higher (12.7% and 3%, respectively) than in healthy smokers (smokers) (5.7%, p < 0.01; 1%, p < 0.001) and non-smoking healthy subjects (HNS) (4.2%, p < 0.001; 0.8%, p < 0.01). The proportions of NK cells and NKT-like cells expressing <it>both </it>perforin <it>and </it>granzyme B were also significantly higher in COPD subjects compared to smokers and HNS. CD56<sup>+ </sup>cells from COPD subjects were significantly more cytotoxic (1414 biological lytic activity) than those from smokers (142.5; p < 0.01) and HNS (3.8; p < 0.001) and were inversely correlated to FEV<sub>1</sub>. (r = -0.75; p = 0.0098).</p> <p>Conclusion</p> <p>We have shown an increased proportion of NK and NKT-like cells in the induced sputum of COPD subjects and have demonstrated that these cells are significantly more cytotoxic in COPD subjects than smokers and HNS.</p
    • …
    corecore