119 research outputs found
Experimental modeling of hypoxia in pregnancy and early postnatal life
The important role of equilibrium of environmental factors during the embryo-fetal period is undisputable. Women of reproductive age are increasingly exposed to various environmental risk factors such as hypoxia, prenatal viral infections, use of drugs, smoking, complications of birth or stressful life events. These early hazards represent an important risk for structural and/or functional maldevelopment of the fetus and neonates. Impairment of oxygen/energy supply during the pre- and perinatal period may affect neuronal functions and induce cell death. Thus when death of the newborn is not occurring following intrauterine hypoxia, various neurological deficits, including hyperactivity, learning disabilities, mental retardation, epilepsy, cerebral palsy, dystonia etc., may develop both in humans and in experimental animals. In our animal studies we used several approaches for modeling hypoxia in rats during pregnancy and shortly after delivery, i.e. chronic intrauterine hypoxia induced by the antiepileptic drug phenytoin, neonatal anoxia by decreased oxygen saturation in 2-day-old pups. Using these models we were able to test potential protective properties of natural (vitamin E, melatonin) and synthetic (stobadine) compounds. Based on our results, stobadine was also able to reduce hypoxia-induced hyperactivity and the antioxidant capacity of stobadine exceeded that of vitamin E and melatonin, and contrary to vitamin E, stobadine had no adverse effects on developing fetus and offspring
Perspectives for biocatalytic lignin utilization: cleaving 4-O-5 and C??-C?? bonds in dimeric lignin model compounds catalyzed by a promiscuous activity of tyrosinase
Background: In the biorefinery utilizing lignocellulosic biomasses, lignin decomposition to value-added phenolic derivatives is a key issue, and recently biocatalytic delignification is emerging owing to its superior selectivity, low energy consumption, and unparalleled sustainability. However, besides heme-containing peroxidases and laccases, information about lignolytic biocatalysts is still limited till date.
Results: Herein, we report a promiscuous activity of tyrosinase which is closely associated with delignification requiring high redox potentials (>1.4 V vs. normal hydrogen electrode [NHE]). The promiscuous activity of tyrosinase not only oxidizes veratryl alcohol, a commonly used nonphenolic substrate for assaying ligninolytic activity, to veratraldehyde but also cleaves the 4-O-5 and C??-C?? bonds in 4-phenoxyphenol and guaiacyl glycerol-??-guaiacyl ether (GGE) that are dimeric lignin model compounds. Cyclic voltammograms additionally verified that the promiscuous activity oxidizes lignin-related high redox potential substrates.
Conclusion
These results might be applicable for extending the versatility of tyrosinase toward biocatalytic delignification as well as suggesting a new perspective for sustainable lignin utilization. Furthermore, the results provide insight for exploring the previously unknown promiscuous activities of biocatalysts much more diverse than ever thought before, thereby innovatively expanding the applicable area of biocatalysis
Glucocorticoids and the prevention of hypoxic-ischemic brain damage
NRC publication: Ye
Maturation of the brain its vasculature and cerebral blood flow responses to blood pressure changes
NRC publication: Ye
Blood eye barriers in the rat: Correlation of ultrastructure with function
NRC publication: Ye
Autoregulation of cerebral blood flow: Influene of local brain development and postnatal age
NRC publication: Ye
Functional magnetic resonance imaging of tonic pain and vasopressor effects in rats
NRC publication: Ye
- …