5,942 research outputs found

    Degrees of freedom and the phase transitions of two flavor QCD

    Full text link
    We study two effective models for QCD, the Nambu-Jona-Lasinio -model and the linear sigma model extended by including a Polyakov loop potential, which is fitted to reproduce pure gauge theory thermodynamics, and a coupling between the chiral fields and the Polyakov loop. Thus the resulting models have as relevant degrees of freedom the Polyakov loop and chiral fields. By comparing the extended models with the bare chiral models we can conclude that the addition of the Polyakov loop is necessary in order to obtain both qualitatively and quantitatively correct results at finite temperatures. These results are extended to finite net quark densities, several thermodynamical quantites are investigated in detail and possible applications and consequences for relativistic heavy ion collision phenomenology are discussed

    Periodic variations in the colours of the classical T Tauri star RW Aur A

    Get PDF
    The classical T Tauri star RW Aur A is an irregular variable with a large amplitude in all photometric bands. In an extended series of photometric data we found small-amplitude periodic variations in the blue colours of the star, with a period of 2.64 days. The period was relatively stable over several years. The amplitude of the periodic signal is 0.21 mag in U-V, 0.07 mag in B-V, and about 0.02 mag in V-R and V-I. No periodicity was found in the V magnitude. The relevance of this photometric period to the recently discovered periodicity in spectral features of the star is discussed, and the hypothesis of a hot spot is critically considered.Comment: 5 pages, 8 figures, uses new aa.cls, accepted for publication in Astronomy and Astrophysic

    Confinement and Chiral Symmetry

    Full text link
    We illustrate why color deconfines when chiral symmetry is restored in gauge theories with quarks in the fundamental representation, and while these transitions do not need to coincide when quarks are in the adjoint representation, entanglement between them is still present.Comment: 4 pages, 1 figure, proceedings of Quark Matter 200

    Halogen bonding enhances nonlinear optical response in poled supramolecular polymers

    Get PDF
    We demonstrate that halogen bonding strongly enhances the nonlinear optical response of poled supramolecular polymer systems. We compare three nonlinear optical chromophores with similar electronic structures but different bond-donating units, and show that both the type and the strength of the noncovalent interaction between the chromophores and the polymer matrix play their own distinctive roles in the optical nonlinearity of the systems

    Measurement of Magnetization Dynamics in Single-Molecule Magnets Induced by Pulsed Millimeter-Wave Radiation

    Full text link
    We describe an experiment aimed at measuring the spin dynamics of the Fe8 single-molecule magnet in the presence of pulsed microwave radiation. In earlier work, heating was observed after a 0.2-ms pulse of intense radiation, indicating that the spin system and the lattice were out of thermal equilibrium at millisecond time scale [Bal et al., Europhys. Lett. 71, 110 (2005)]. In the current work, an inductive pick-up loop is used to probe the photon-induced magnetization dynamics between only two levels of the spin system at much shorter time scales (from ns to us). The relaxation time for the magnetization, induced by a pulse of radiation, is found to be on the order of 10 us.Comment: 3 RevTeX pages, including 3 eps figures. The paper will appear in the Journal of Applied Physics as MMM'05 conference proceeding

    Incoherent dynamics of vibrating single-molecule transistors

    Get PDF
    We study the tunneling conductance of nano-scale quantum ``shuttles'' in connection with a recent experiment (H. Park et al., Nature, 407, 57 (2000)) in which a vibrating C^60 molecule was apparently functioning as the island of a single electron transistor (SET). While our calculation starts from the same model of previous work (D. Boese and H. Schoeller, Europhys. Lett. 54, 66(2001)) we obtain quantitatively different dynamics. Calculated I-V curves exhibit most features present in experimental data with a physically reasonable parameter set, and point to a strong dependence of the oscillator's potential on the electrostatics of the island region. We propose that in a regime where the electric field due to the bias voltage itself affects island position, a "catastrophic" negative differential conductance (NDC) may be realized. This effect is directly attributable to the magnitude of overlap of final and initial quantum oscillator states, and as such represents experimental control over quantum transitions of the oscillator via the macroscopically controllable bias voltage.Comment: 6 pages, LaTex, 6 figure

    Decoherence in circuits of small Josephson junctions

    Full text link
    We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time τϕ\tau_\phi.Comment: 4 pages, 4 figure
    • 

    corecore