71 research outputs found

    Shape matters: Competing mechanisms of particle shape segregation

    Get PDF
    It is well-known that granular mixtures that differ in size or shape segregate when sheared. In the past, two mechanisms have been proposed to describe this effect, and it is unclear if both exist. To settle this question, we consider a bidisperse mixture of spheroids of equal volume in a rotating drum, where the two mechanisms are predicted to act in opposite directions. We present the first evidence that there are two distinct segregation mechanisms driven by relative over-stress. Additionally, we showed that for non-spherical particles, these two mechanisms can act in different directions leading to a competition between the effects of the two. As a result, the segregation intensity varies nonmonotonically as a function of AR, and at specific points, the segregation direction changes for both prolate and oblate spheroids, explaining the surprising segregation reversal previously reported. Consistent with previous results, we found that the kinetic mechanism is dominant for (almost) spherical particles. Furthermore, for moderate aspect ratios, the kinetic mechanism is responsible for the spherical particles segregation to the periphery of the drum, and the gravity mechanism plays only a minor role. Whereas, at the extreme values of AR, the gravity mechanism notably increases and overtakes its kinetic counterpart

    Mercury-DPM: Fast particle simulations in complex geometries

    Get PDF
    Mercury-DPM is a code for performing discrete particle simulations. That is to say, it simulates the motion of particles, or atoms, by applying forces and torques that stem either from external body forces, (e.g. gravity, magnetic fields, etc…) or from particle interactions. For granular particles, these are typically contact forces (elastic, viscous, frictional, plastic, cohesive), while for molecular simulations, forces typically stem from interaction potentials (e.g. Lennard-Jones). Often the method used in these packages is referred to as the discrete element method (DEM), which was originally designed for geotechnical applications. However, as Mercury-DPM is designed for simulating particles with emphasis on contact models, optimized contact detection for highly different particle sizes, and in-code coarse graining (in contrast to post-processing), we prefer the more general name discrete particle simulation. The code was originally developed for granular chute flows, and has since been extended to many other granular applications, including the geophysical modeling of cinder cone creation. Despite its granular heritage it is designed in a flexible way so it can be adapted to include other features such as long-range interactions and non-spherical particles, etc

    Controlling transmembrane protein concentration and orientation in supported lipid bilayers

    Get PDF
    The trans-membrane protein – proteorhodopsin (pR) has been incorporated into supported lipid bilayers (SLB). In-plane electric fields have been used to manipulate the orientation and concentration of these proteins, within the SLB, through electrophoresis leading to a 25-fold increase concentration of pR

    Perturbation of the yeast mitochondrial lipidome and associated membrane proteins following heterologous expression of Artemia-ANT

    Get PDF
    Heterologous expression is a landmark technique for studying a protein itself or its effect on the expression host, in which membrane-embedded proteins are a common choice. Yet, the impact of inserting a foreign protein to the lipid environment of host membranes, has never been addressed. Here we demonstrated that heterologous expression of the Artemia franciscana adenine nucleotide translocase (ANT) in yeasts altered lipidomic composition of their inner mitochondrial membranes. Along with this, activities of complex II, IV and ATP synthase, all membrane-embedded components, were significantly decreased while their expression levels remained unaffected. Although the results represent an individual case of expressing a crustacean protein in yeast inner mitochondrial membranes, it cannot be excluded that host lipidome alterations is a more widespread epiphenomenon, potentially biasing heterologous expression experiments. Finally, our results raise the possibility that not only lipids modulate protein function, but also membrane-embedded proteins modulate lipid composition, thus revealing a reciprocal mode of regulation for these two biomolecular entities

    Extended kinetic theory applied to inclined granular flows: role of boundaries

    Get PDF
    We compare the predictions of extended kinetic theory (EKT), where the roles of surface friction and correlation in fluctuation velocities are taken into account, with discrete element simulations of steady, fully-developed, inclined flows of identical spheres over bumpy bases, in the presence and absence of flat, frictional sidewalls. We show that the constitutive relation for the pressure of EKT must be modified in the proximity of the boundary, because of the influence of excluded volume and shielding associated with collisions of particles with the boundary itself. We also note that currently available boundary conditions for flows over bumpy planes in kinetic theory underestimate the energy dissipation. These two observations explain the lack of agreement of EKT with the simulations, in terms of the maximum angles of inclination for which steady, fully-developed flows are possible. That is, for some high angles of inclination, EKT does not have solutions, while steady flows are predicted in DEM. However, whenever a solution to the system of differential equations of EKT does exist, the predicted distributions of velocity, solid volume fraction and granular temperature satisfactorily match the numerical measurements. The incompressible, algebraic approximation of EKT, which ignores the conduction of energy in the energy balance, admits solutions for a wider range of angles of inclination, as in the simulations, but fails to reproduce the quantitative and qualitative behaviour of solid volume fraction and granular temperature in the two conductive layers at the top and bottom of the flow. When frictional sidewalls are added to the domain, we show that the spanwise ratio of shear stress to pressure is linearly distributed in the dense core region of the flow, confirming that the sidewalls exert, on average, a Coulomb-like resistance to the flow with an effective friction coefficient which is less than half the actual particle-wall friction

    Sponsored search advertising and dynamic pricing for perishable products under inventory-linked customer willingness to pay

    No full text
    Several online retailers provide inventory availability information on their websites in addition to leveraging sponsored search advertising to drive customer traffic to their retail websites. The increased ability of users to interact over the internet encourages retailers to shift to sponsored search advertising. In this paper, we design a decision support model to provide strategic bid and pricing decisions to a retailer selling a perishable product over a short horizon using sponsored search advertising to attract customers to his website. The retailer complements sponsored search bidding with dynamic pricing in a multi-period stochastic dynamic programming framework. Our analyses show that it is optimal for the retailer to invest heavily in bidding at low inventory levels, whereas at high levels of inventory he should use price promotions to enhance profits. We also find that the optimal bid and price increase with the increase in mean and variability of the customer's reservation price. © 2019 Elsevier B.V

    Numerical modelling of granular flows: a reality check

    No full text
    corecore