12 research outputs found

    Instrumented Flexible Glass Structure: A Bragg Grating Inscribed with Femtosecond Laser Used as a Bending Sensor.

    Full text link
    peer reviewedFused silica glass is a material with outstanding mechanical, thermal and optical properties. Being a brittle material, it is challenging to shape. In the last decade, the manufacturing of monolithic flexible mechanisms in fused silica has evolved with the femtosecond-laser-assisted etching process. However, instrumenting those structures is demanding. To address this obstacle, this article proposes to inscribe a Bragg Grating sensor inside a flexure and interface it with an optical fibre to record the strain using a spectrum analyser. The strain sensitivity of this Bragg Grating sensor is characterized at 1.2 pm/μϵ (1 μϵ = 1 microstrain). Among other applications, deformation sensing can be used to record a force. Its use as a micro-force sensor is estimated. The sensor resolution is limited by our recording equipment to 30 μN over a measurement range above 10 mN. This technology can offer opportunities for surgery applications or others where precision and stability in harsh environments are required

    Femtosecond pulse laser-engineered glass flexible structures instrumented with an in-built Bragg grating sensor

    No full text
    The advent of near-infrared femtosecond pulse laser has enabled the highly-resolved manufacturing of micro/nano structures in various materials including glass. In this paper, we make use of an automated femtosecond laser system, so-called Femtoprint, to design a monolithic self-instrumented mechanism that we use for in-built strain sensing. To that aim, a flexible structure is designed and produced from a silica planar substrate. It has a flexural joint in which an optical waveguide and a Bragg grating have been directly inscribed using femtosecond pulse laser. The latter provides a non-destructive and non-intrusive measurement tool. The axial strain sensitivity of the in-built Bragg grating has been experimentally determined to be 1.22 pm/mumu ϵ, while its temperature sensitivity is 10.51 pm/ANDinfo:eu-repo/semantics/publishe
    corecore