13 research outputs found
A Guide to Choosing Vectors for Transformation of the Plastid Genome of Higher Plants1[C][W][OA]
Plastid transformation, originally developed in tobacco (Nicotiana tabacum), has recently been extended to a number of crop species enabling in vivo probing of plastid function and biotechnological applications. In this article we report new plastid vectors that enable insertion of transgenes in the inverted repeat region of the plastome between the trnV and 3′rps12 or trnI and trnA genes. Efficient recovery of transplastomic clones is ensured by selection for spectinomycin (aadA) or kanamycin (neo) resistance genes. Expression of marker genes can be verified using commercial antibodies that detect the accumulation of neomycin phosphotranseferase II, the neo gene product, or the C-terminal c-myc tag of aminoglycoside-3″-adenylytransferase, encoded by the aadA gene. Aminoglycoside-3″-adenylytransferase, the spectinomycin inactivating enzyme, is translationally fused with green fluorescent protein in two vectors so that transplastomic clones can be selected by spectinomycin resistance and visually identified by fluorescence in ultraviolet light. The marker genes in the new vectors are flanked by target sites for Cre or Int, the P1 and phiC31 phage site-specific recombinases. When uniform transformation of all plastid genomes is obtained, the marker genes can be excised by Cre or Int expressed from a nuclear gene. Choice of expression signals for the gene of interest, complications caused by the presence of plastid DNA sequences recognized by Cre, and loss of transgenes by homologous recombination via duplicated sequences are also discussed to facilitate a rational choice from among the existing vectors and to aid with new target-specific vector designs
Study of Plastid Genome Stability in Tobacco Reveals That the Loss of Marker Genes Is More Likely by Gene Conversion Than by Recombination between 34-bp loxP Repeats1[C][OA]
In transformed tobacco (Nicotiana tabacum) plastids, we flank the marker genes with recombinase target sites to facilitate their posttransformation excision. The P1 phage loxP sites are identical 34-bp direct repeats, whereas the phiC31 phage attB/attP sites are 54- and 215-bp sequences with partial homology within the 54-bp region. Deletions in the plastid genome are known to occur by recombination between directly repeated sequences. Our objective was to test whether or not the marker genes may be lost by homologous recombination via the directly repeated target sites in the absence of site-specific recombinases. The sequence between the target sites was the barau gene that causes a golden-yellow (aurea) leaf color, so that the loss of the barau gene can be readily detected by the appearance of green sectors. We report here that transplastomes carrying the barau gene marker between recombinase target sites are relatively stable because no green sectors were detected in approximately 36,000 seedlings (Nt-pSS33 lines) carrying attB/attP-flanked barau gene and in approximately 38,000 seedlings (Nt-pSS42 lines) carrying loxP-flanked barau gene. Exceptions were six uniformly green plants in the Nt-pSS42-7A progeny. Sequencing the region of plastid DNA that may derive from the vector indicated that the barau gene in the six green plants was lost by gene conversion using wild-type plastid DNA as template rather than by deletion via directly repeated loxP sites. Thus, the recombinase target sites incorporated in the plastid genome for marker gene excisions are too short to mediate the loss of marker genes by homologous recombination at a measurable frequency
Expression of active Streptomyces phage phiC31 integrase in transgenic wheat plants
Site-specific recombination systems are becoming an important tool for the genetic modification of crop plants. Here we report the functional expression of the Streptomyces phage-derived phiC31 recombinase (integrase) in wheat. T-DNA constructs containing a phiC31 integrase transgene were stably transformed into wheat plants via particle gun bombardment. A plant-virus-based assay system was used to monitor the site-specific recombination activity of the recombinant integrase protein in vivo. We established several independent doubled haploid (DH) inbred lines that constitutively express an active integrase enzyme without any apparent detrimental effects on plant growth and development. The potential of phiC31 integrase expression in crop plants related to transgene control technologies or hybrid breeding systems is discussed.Myroslava Rubtsova, Katja Kempe, Angelika Gils, Ainur Ismagul, Jens Weyen and Mario Gils