27 research outputs found
The quadratic spinor Lagrangian is equivalent to the teleparallel theory
The quadratic spinor Lagrangian is shown to be equivalent to the teleparallel
/ tetrad representation of Einstein's theory. An important consequence is that
the energy-momentum density obtained from this quadratic spinor Lagrangian is
essentially the same as the ``tensor'' proposed by Moller in 1961.Comment: 10 pages, RevTe
Solution and bulk properties of branched polyvinyl acetates IV--Melt viscosity
The melt viscosities of some randomly branched and some comb shaped branched polyvinyl acetate fractions were compared to the viscosities of linear polymer over a range of molecular weights. The melt viscosity of the branched polymer was usually higher than that of linear polymer of the same weight average molecular weight. The extent of this increase was related to the molecular weight of the branches but no correlation could be found which included the number of branches per molecule. This unusual behaviour is believed to be due to the fact that the length of the branches in the polymers of this study was above the critical chain length for polyvinyl acetate which made it possible for the branches to be engaged in intermolecular chain entanglements.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32168/1/0000223.pd
Charged Dilaton, Energy, Momentum and Angular-Momentum in Teleparallel Theory Equivalent to General Relativity
We apply the energy-momentum tensor to calculate energy, momentum and
angular-momentum of two different tetrad fields. This tensor is coordinate
independent of the gravitational field established in the Hamiltonian structure
of the teleparallel equivalent of general relativity (TEGR). The spacetime of
these tetrad fields is the charged dilaton. Our results show that the energy
associated with one of these tetrad fields is consistent, while the other one
does not show this consistency. Therefore, we use the regularized expression of
the gravitational energy-momentum tensor of the TEGR. We investigate the energy
within the external event horizon using the definition of the gravitational
energy-momentum.Comment: 22 Pages Late
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.
Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.
Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.
Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic.
Funding: Bill & Melinda Gates Foundation
Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
Effect of large graphene particle size on structure, optical property and photocatalytic activity of graphene-titanate nanotube composites
Available online 19 October 2021In this work we investigate the crystal transformation and optical properties of hydrothermal titania nanotube (TNT) when combining with large size of exfoliated graphene achieved by electrochemical process (EC-Gr). The TNT monoclinic structure has been changed to TiO2 anatase phase when TNT was grown in the presence of graphene dispersion. The effect of graphene on the evolution of TNT crystal could be understood by the interaction of carbon elements in graphene and Ti4+ ions in the titania structure. Due to the carrier separation which reduced recombination rate of excited photoelectrons and holes revealed by photoluminescence characterizations, the visible light photocatalytic activity in degradation of methylene blue in solution of the composite was enhanced. The photocatalytic enhancement was discussed and clarified based on UV–vis diffuse absorption spectra and time-resolved photoluminescence investigation.Vo Cao Minh, Phan Tan Dat, Pham Thi Thuy, Nguyen Xuan Sang, Nguyen Tri Tuan, Tran Thanh Tung, Dusan Losi
Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network
Robotics is one of the most emerging technologies today, and are used in a variety of applications, ranging from complex rocket technology to monitoring of crops in agriculture. Robots can be exceptionally useful in a smart hospital environment provided that they are equipped with improved vision capabilities for detection and avoidance of obstacles present in their path, thus allowing robots to perform their tasks without any disturbance. In the particular case of Autonomous Nursing Robots, major essential issues are effective robot path planning for the delivery of medicines to patients, measuring the patient body parameters through sensors, interacting with and informing the patient, by means of voice-based modules, about the doctors visiting schedule, his/her body parameter details, etc. This paper presents an approach of a complete Autonomous Nursing Robot which supports all the aforementioned tasks. In this paper, we present a new Autonomous Nursing Robot system capable of operating in a smart hospital environment area. The objective of the system is to identify the patient room, perform robot path planning for the delivery of medicines to a patient, and measure the patient body parameters, through a wireless BLE (Bluetooth Low Energy) beacon receiver and the BLE beacon transmitter at the respective patient rooms. Assuming that a wireless beacon is kept at the patient room, the robot follows the beacon’s signal, identifies the respective room and delivers the needed medicine to the patient. A new fuzzy controller system which consists of three ultrasonic sensors and one camera is developed to detect the optimal robot path and to avoid the robot collision with stable and moving obstacles. The fuzzy controller effectively detects obstacles in the robot’s vicinity and makes proper decisions for avoiding them. The navigation of the robot is implemented on a BLE tag module by using the AOA (Angle of Arrival) method. The robot uses sensors to measure the patient body parameters and updates these data to the hospital patient database system in a private cloud mode. It also makes uses of a Google assistant to interact with the patients. The robotic system was implemented on the Raspberry Pi using Matlab 2018b. The system performance was evaluated on a PC with an Intel Core i5 processor, while the solar power was used to power the system. Several sensors, namely HC-SR04 ultrasonic sensor, Logitech HD 720p image sensor, a temperature sensor and a heart rate sensor are used together with a camera to generate datasets for testing the proposed system. In particular, the system was tested on operations taking place in the context of a private hospital in Tirunelveli, Tamilnadu, India. A detailed comparison is performed, through some performance metrics, such as Correlation, Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE), against the related works of Deepu et al., Huh and Seo, Chinmayi et al., Alli et al., Xu, Ran et al., and Lee et al. The experimental system validation showed that the fuzzy controller achieves very high accuracy in obstacle detection and avoidance, with a very low computational time for taking directional decisions. Moreover, the experimental results demonstrated that the robotic system achieves superior accuracy in detecting/avoiding obstacles compared to other systems of similar purposes presented in the related works. © 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
RainPredRNN: A New Approach for Precipitation Nowcasting with Weather Radar Echo Images Based on Deep Learning
Precipitation nowcasting is one of the main tasks of weather forecasting that aims to predict rainfall events accurately, even in low-rainfall regions. It has been observed that few studies have been devoted to predicting future radar echo images in a reasonable time using the deep learning approach. In this paper, we propose a novel approach, RainPredRNN, which is the combination of the UNet segmentation model and the PredRNN_v2 deep learning model for precipitation nowcasting with weather radar echo images. By leveraging the abilities of the contracting-expansive path of the UNet model, the number of calculated operations of the RainPredRNN model is significantly reduced. This result consequently offers the benefit of reducing the processing time of the overall model while maintaining reasonable errors in the predicted images. In order to validate the proposed model, we performed experiments on real reflectivity fields collected from the Phadin weather radar station, located at Dien Bien province in Vietnam. Some credible quality metrics, such as the mean absolute error (MAE), the structural similarity index measure (SSIM), and the critical success index (CSI), were used for analyzing the performance of the model. It has been certified that the proposed model has produced improved performance, about 0.43, 0.95, and 0.94 of MAE, SSIM, and CSI, respectively, with only 30% of training time compared to the other methods. © 2022 by the authors. Licensee MDPI, Basel, Switzerland