215 research outputs found

    High-energy terahertz surface optical rectification

    Get PDF
    The interest in surface terahertz emitters lies in their extremely thin active region, typically hundreds of atomic layers, and the agile surface scalability. The ultimate limit in the achievable emission is determined by the saturation of the several different mechanisms concurring to the THz frequency conversion. Although there is a very prolific debate about the contribution of each process, surface optical rectification has been highlighted as the dominant process at high excitation, but the effective limits in the conversion are largely unknown. The current state of the art suggests that in field-induced optical rectification a maximum limit of the emission may exist and it is ruled by the photocarrier induced neutralisation of the medium's surface field. This would represent the most important impediment to the application of surface optical rectification in high-energy THz emitters. We experimentally unveil novel physical insights in the THz conversion at high excitation energies mediated by the ultrafast surface optical rectification process. The main finding is that the expected total saturation of the Terahertz emission vs pump energy does not actually occur. At high energy, the surface field region contracts towards the surface. We argue that this mechanism weakens the main saturation process, re-establishing a clearly observable quadratic dependence between the emitted THz energy and the excitation. This is relevant in enabling access to intense generation at high fluences

    Assessment of coastal fish assemblages before the establishment of a new marine protected area in central Mediterranean: its role in formulating zoning proposal

    Get PDF
    The fish assemblages of the coastal area of the promontory of Cape Milazzo (Italy, Central Mediterranean), which has been recently designated by the Italian Law to become a national marine protected area (MPA), were characterized by visual censuses carried out over different habitats (rocky algal reef, Posidonia oceanica meadow and soft bottom) and depth ranges (0-3, 4-7, 12-16 and 24-30 m) to identify areas of major concern for the MPA zoning. The study area was divided into 6 sectors to assess spatial-related differences in the assemblage parameters, such as species composition and richness, and the size structure of species of recreational (e.g. SCUBA diving) interest. Fifty-eight taxa (56 species and 2 genera) and 20 families of fishes were totally recorded. Species composition was significantly affected by habitat and depth, whereas no significant changes were detected among sectors. Conversely, species richness and total density of fish showed no significant differences among sectors, habitat types and depth ranges. The majority of species of recreational value was recorded only off the northwestern part of the promontory. The implementation of fishing ban in such an area, characterized by the presence of a rocky bank, would contribute to the recovery of populations of some emblematic species (e.g. groupers and other large predator) and to the enhancement of environmentally sustainable activities such as scuba diving. Throughout the investigated area and, especially, in the eastern and southwestern coasts of the promontory, several species were almost exclusively represented by small and medium sized individuals, a likely consequence of an intense fishing pressure

    An updated overview of the geographic and bathymetric distribution of Savalia savaglia

    Get PDF
    The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data, collected using a ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species

    An updated overview of the geographic and bathymetric distribution of Savalia savaglia

    Get PDF
    The distribution of gold coral Savalia savaglia is modified on the basis of bibliographic information and recent occurrence data, collected using a ROV (Remotely Operated Vehicle) and SCUBA divers. The species is long-lived, rare and has been exploited in the past by divers for collection purposes. S. savaglia is listed in Annex II of the SPA/BD Protocol of the Barcelona Convention and has a wider distribution than previously thought, including both the Mediterranean Sea and the Atlantic Ocean. Our results highlighted that specimens mainly live at a depth range of 15-90 m, but may reach as deep as 900 m in the Mediterranean Sea. This species can form monospecific facies of hundreds of colonies, as observed in Montenegro (Adriatic Sea), between 10 and 20 m, and in the Canary Islands, at a depth range of 27-70 m. Recent data highlighted numerous cases of specimens that were endangered by lost fishing gear, which exposed this species to further threats. Considering its longevity and structural role, it is urgent to develop an effective protection measure for S. savaglia, thereby increasing research efforts and implementing protection areas for this species

    Integrated multi-band WSS: from design to performance evaluation

    Get PDF
    Modern day optical communications require ever-increasing bandwidths and capacity, in order to keep up with the growth of traffic and resource-intensive applications. This increase in network capacity can be achieved through the use of the residual capacity of current-day infrastructure, although this requires switching and routing devices capable of wide-band operation in multiple transmission windows. In this work, we describe the design principle, architecture, and performance simulation of a photonic integrated circuit (PIC) based multi-band WSS, which is envisioned to operate on the S+C+L windows. While the architecture is scalable to an arbitrary channel and port count, we showcase a 24-channel implementation deployed on the 400ZR standard, providing both the penalty evaluation through DSP simulations, as well as a footprint evaluation based on the components design

    Microbiological-chemical sourced chondroitin sulfates protect neuroblastoma SH-SY5Y cells against oxidative stress and are suitable for hydrogel-based controlled release

    Get PDF
    Chondroitin sulfates (CS) are a class of sulfated glycosaminoglycans involved in many biological processes. Several studies reported their protective effect against neurodegenerative conditions like Alzheimer’s disease. CS are commonly derived from animal sources, but ethi-cal concerns, the risk of contamination with animal proteins, and the difficulty in controlling the sulfation pattern have prompted research towards non-animal sources. Here we exploited two microbiological-chemical sourced CS (i.e., CS-A,C and CS-A,C,K,L) and Carbopol 974P NF/agarose semi-interpenetrating polymer networks (i.e., P.NaOH.0 and P.Ethanol.0) to set up a release system, and tested the neuroprotective role of released CS against H2 O2-induced oxidative stress. After assessing that our CS (1–100 µM) require a 3 h pre-treatment for neuroprotection with SH-SY5Y cells, we evaluated whether the autoclave type (i.e., N-or B-type) affects hydrogel viscoelastic properties. We selected B-type autoclaves and repeated the study after loading CS (1 or 0.1 mg CS/0.5 mL gel). After loading 1 mg CS/0.5 mL gel, we evaluated CS release up to 7 days by 1,9-dimethylmethylene blue (DMMB) assay and verified the neuroprotective role of CS-A,C (1 µM) in the supernatants. We observed that CS-A,C exhibits a broader neuroprotective effect than CS-A,C,K,L. Moreover, sulfation pattern affects not only neuroprotection, but also drug release

    Pectin-based bioinks for 3D models of neural tissue produced by a pH-controlled kinetics

    Get PDF
    Introduction: In the view of 3D-bioprinting with cell models representative of neural cells, we produced inks to mimic the basic viscoelastic properties of brain tissue. Moving from the concept that rheology provides useful information to predict ink printability, this study improves and expands the potential of the previously published 3D-reactive printing approach by introducing pH as a key parameter to be controlled, together with printing time. Methods: The viscoelastic properties, printability, and microstructure of pectin gels crosslinked with CaCO3 were investigated and their composition was optimized (i.e., by including cell culture medium, HEPES buffer, and collagen). Different cell models representative of the major brain cell populations (i.e., neurons, astrocytes, microglial cells, and oligodendrocytes) were considered. Results and Discussion: The outcomes of this study propose a highly controllable method to optimize the printability of internally crosslinked polysaccharides, without the need for additives or post-printing treatments. By introducing pH as a further parameter to be controlled, it is possible to have multiple (pH-dependent) crosslinking kinetics, without varying hydrogel composition. In addition, the results indicate that not only cells survive and proliferate following 3D-bioprinting, but they can also interact and reorganize hydrogel microstructure. Taken together, the results suggest that pectin-based hydrogels could be successfully applied for neural cell culture
    • …
    corecore