3 research outputs found

    Reversing the effects of androgen-deprivation therapy in men with metastatic castration-resistant prostate cancer

    Get PDF
    OBJECTIVE: To investigate whether bipolar androgen therapy (BAT), involving rapid cyclic administration of high-dose testosterone, as a novel treatment for metastatic castration-resistant prostate cancer (mCRPC) promotes improvements in body composition and associated improvements in lipid profiles and quality of life. PATIENTS AND METHODS: Men from two completed trials with computed tomography imaging at baseline and after three cycles of BAT were included. Cross-sectional areas of psoas muscle, visceral and subcutaneous fat were measured at the L3 vertebral level. Functional Assessment of Chronic Illness Therapy - Fatigue questionnaire and 36-item short-form health survey were used to assess quality of life. RESULTS: The 60 included patients lost a mean (sd) of 7.8 (8.2)% of subcutaneous fat, 9.8 (18.2)% of visceral fat, and gained 12.2 (6.7)% muscle mass. Changes in subcutaneous and visceral fat were positively correlated with each other (Spearman\u27s correlation coefficient 0.58, 95% confidence interval 0.35-0.71) independent of the effects of age, body mass index, and duration of androgen-deprivation therapy. Energy, physical function, and measures of limitations due to physical health were all significantly improved at 3 months. The improvements in body composition were not correlated with decreases in lipid levels or observed improvements in quality of life. CONCLUSIONS: In the present study, BAT was associated with significant improvements in body composition, lipid parameters, and quality of life. This has promising implications for the long-term health of men with mCRPC

    Acute worsening of CADASIL in a patient with COVID-19 infection: illustrative case

    No full text
    BACKGROUND: Reports of cerebrovascular ischemia and stroke occurring as predominant neurological sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), are increasingly evident within the literature. While various pathophysiological mechanisms have been postulated, including hypercoagulability, endothelial invasion, and systemic inflammation, discrete mechanisms for viral neurotropism remain unclear and controversial. OBSERVATIONS: The authors present a unique case study of a 64-year-old male with acute COVID-19 infection and acute worsening of previously stable cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a rare heritable arteriopathy due to mutation in the Notch3 gene, which is critical for vascular development and tone. Delayed cranial neuropathies, brainstem fluid-attenuated inversion recovery signal, and enhancement of olfactory and vagus nerves on magnetic resonance neurography in this patient further support viral neurotropism via cranial nerves in addition to cerebral vasculature. LESSONS: To the authors\u27 knowledge, this is the first case in the literature that not only demonstrates the consequences of COVID-19 infection in a patient with altered cerebrovascular autoregulation such as CADASIL but also highlights the tropism of SARS-CoV-2 for (1) cranial nerves as a mode of entry to the central nervous system and (2) vessels as a cause of cerebrovascular ischemia
    corecore