2 research outputs found

    A Dictionary Learning Approach for Noise-Robust Image Reconstruction in Low-Field Magnetic Resonance Imaging

    No full text
    Objective: Image denoising has been considered as a separate procedure from image reconstruction which could otherwise be combined with acquisition and reconstruction. This paper discusses a joint image reconstruction and denoising algorithm in low-field MRI using a dictionary learning approach. Method: Our proposed algorithm uses a two-level Bregman iterative method for image reconstruction and image denoising procedure using OMP for sparse coding and SimCO for Dictionary Update and Learning. Results: Experiments were done on a noisy phantom that was obtained from a low field MRI scanner. Results demonstrate that our proposed algorithm performs superior image reconstructions that are almost noise-free. Our proposed method also performed better than the TBMDU algorithm, which performed better than DLMRI, a technique that substantially outperformed other CSMRI based reconstruction methods. However, the TBMDU algorithm is faster than our proposed algorithm due to additional iterations required during the denoising step. Conclusion: An algorithm that jointly performs reconstruction and denoising is essential in medical imaging modalities where image denoising has been a separate process from the reconstruction. Combining the two could save time and could avoid image details to be lost due to having two separate operations. This formulation is essential in imaging modalities like low-field MRI where the image signal is noisy and therefore performing a joint reconstruction and denoising could help improve the quality of the images obtained. Numerical Analysi

    Adaptive-size dictionary learning using information theoretic criteria for image reconstruction from undersampled k-space data in low field magnetic resonance imaging

    No full text
    Background: Magnetic resonance imaging (MRI) is a safe non-invasive and nonionizing medical imaging modality that is used to visualize the structure of human anatomy. Conventional (high-field) MRI scanners are very expensive to purchase, operate and maintain, which limit their use in many developing countries. This study is part of a project that aims at addressing these challenges and is carried out by teams from Mbarara University of Science and Technology (MUST) in Uganda, Leiden University Medical Center (LUMC) in the Netherlands, Delft University of Technology (TU Delft) in the Netherlands and Pennsylvania State University (PSU) in the USA. These are working on developing affordable, portable and low-field MRI scanners to diagnose children in developing countries with hydrocephalus. The challenges faced by the teams are that the low-field MRI scanners currently under development are characterized by low Signal-to-Noise Ratio (SNR), and long scan times. Methods: We propose an algorithm called adaptive-size dictionary learning algorithm (AS-DLMRI) that integrates information-theoretic criteria (ITC) and Dictionary learning approaches. The result of the integration is an adaptive-size dictionary that is optimal for any input signal. AS-DLMRI may help to reduce the scan time and improve the SNR of the generated images, thereby improving the image quality. Results: We compared our proposed algorithm AS-DLMRI with adaptive patch-based algorithm known as DLMRI and non-adaptive CSMRI technique known as LDP. DLMRI and LDP have been used as the baseline algorithms in other related studies. The results of AS-DLMRI are consistently slightly better in terms of PSNR, SNR and HFEN than for DLMRI, and are significantly better than for LDP. Moreover, AS-DLMRI is faster than DLMRI. Conclusion: Using a dictionary size that is appropriate to the input data could reduce the computational complexity, and also the construction quality since only dictionary atoms that are relevant to the task are included in the dictionary and are used during the reconstruction. However, AS-DLMRI did not completely remove noise during the experiments with the noisy phantom. Our next step in our research is to integrate our proposed algorithm with an image denoising function. Numerical Analysi
    corecore