10 research outputs found

    ML 3.0 smoothed aggregation user's guide.

    Get PDF
    ML is a multigrid preconditioning package intended to solve linear systems of equations Az = b where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. ML should be used on large sparse linear systems arising from partial differential equation (PDE) discretizations. While technically any linear system can be considered, ML should be used on linear systems that correspond to things that work well with multigrid methods (e.g. elliptic PDEs). ML can be used as a stand-alone package or to generate preconditioners for a traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying a few functions. This document describes one specific algebraic multigrid approach: smoothed aggregation. This approach is used within several specialized multigrid methods: one for the eddy current formulation for Maxwell's equations, and a multilevel and domain decomposition method for symmetric and non-symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dynamics problems). Other methods exist within ML but are not described in this document. Examples are given illustrating the problem definition and exercising multigrid options

    Solution methods for very highly integrated circuits.

    No full text
    While advances in manufacturing enable the fabrication of integrated circuits containing tens-to-hundreds of millions of devices, the time-sensitive modeling and simulation necessary to design these circuits poses a significant computational challenge. This is especially true for mixed-signal integrated circuits where detailed performance analyses are necessary for the individual analog/digital circuit components as well as the full system. When the integrated circuit has millions of devices, performing a full system simulation is practically infeasible using currently available Electrical Design Automation (EDA) tools. The principal reason for this is the time required for the nonlinear solver to compute the solutions of large linearized systems during the simulation of these circuits. The research presented in this report aims to address the computational difficulties introduced by these large linearized systems by using Model Order Reduction (MOR) to (i) generate specialized preconditioners that accelerate the computation of the linear system solution and (ii) reduce the overall dynamical system size. MOR techniques attempt to produce macromodels that capture the desired input-output behavior of larger dynamical systems and enable substantial speedups in simulation time. Several MOR techniques that have been developed under the LDRD on 'Solution Methods for Very Highly Integrated Circuits' will be presented in this report. Among those presented are techniques for linear time-invariant dynamical systems that either extend current approaches or improve the time-domain performance of the reduced model using novel error bounds and a new approach for linear time-varying dynamical systems that guarantees dimension reduction, which has not been proven before. Progress on preconditioning power grid systems using multi-grid techniques will be presented as well as a framework for delivering MOR techniques to the user community using Trilinos and the Xyce circuit simulator, both prominent world-class software tools

    An overview of Trilinos

    Get PDF
    Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government

    An Ice Sheet Model Validation Framework for the Greenland Ice Sheet

    Get PDF
    We propose a new ice sheet model validation framework – the Cryospheric Model Comparison Tool (CmCt) – that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of  \u3c  1 m). This is likely due to their short period of record, biases inherent to digital elevation models used for model initial conditions, and biases resulting from firn dynamics, which are not explicitly accounted for in the models or observations. On the other hand, we find that the gravimetry observations used here are able to unambiguously distinguish between simulations of varying complexity, and along with the CmCt, can provide a quantitative score for assessing a particular model and/or simulation. The new framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation
    corecore