4 research outputs found

    5‑Substituted Pyridine-2,4-dicarboxylate Derivatives Have Potential for Selective Inhibition of Human Jumonji‑C Domain-Containing Protein 5

    Get PDF
    Jumonji-C domain-containing protein 5 (JMJD5) is a 2-oxoglutarate (2OG)-dependent oxygenase that plays important roles in development, circadian rhythm, and cancer through unclear mechanisms. JMJD5 has been reported to have activity as a histone protease, as an Nε-methyl lysine demethylase, and as an arginine residue hydroxylase. Small-molecule JMJD5-selective inhibitors will be useful for investigating its (patho)physiological roles. Following the observation that the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylic acid (2,4-PDCA) is a 2OG-competing JMJD5 inhibitor, we report that 5-aminoalkyl-substituted 2,4-PDCA derivatives are potent JMJD5 inhibitors manifesting selectivity for JMJD5 over other human 2OG oxygenases. Crystallographic analyses with five inhibitors imply induced fit binding and reveal that the 2,4-PDCA C5 substituent orients into the JMJD5 substrate-binding pocket. Cellular studies indicate that the lead compounds display similar phenotypes as reported for clinically observed JMJD5 variants, which have a reduced catalytic activity compared to wild-type JMJD5

    Joint diffraction and modeling approach to the structure of liquid alumina

    Get PDF
    The structure of liquid alumina at a temperature ∼2400 K near its melting point was measured using neutron and high-energy x-ray diffraction by employing containerless aerodynamic–levitation and laser-heating techniques. The measured diffraction patterns were compared to those calculated from molecular dynamics simulations using a variety of pair potentials, and the model found to be in best agreement with experiments was refined using the reverse Monte Carlo method. The resultant model shows that the melt is composed predominantly of AlO4 and AlO5 units, in the approximate ratio of 2:1, with only minor fractions of AlO3 and AlO6 units. The majority of Al-O-Al connections involve corner-sharing polyhedra (83%), although a significant minority involve edge-sharing polyhedra (16%), predominantly between AlO5 and either AlO5 or AlO4 units. Most of the oxygen atoms (81%) are shared among three or more polyhedra, and the majority of these oxygen atoms are triply shared among one or two AlO4 units and two or one AlO5 units, consistent with the abundance of these polyhedra in the melt and their fairly uniform spatial distribution
    corecore