25 research outputs found

    Clinical pharmacology of exogenously administered alkaline phosphatase

    Get PDF
    Purpose: To evaluate the clinical pharmacology of exogenous alkaline phosphatase (AP). Methods: Randomized, double-blind, placebo-controlled sequential protocols of (1) ascending doses and infusion duration (volunteers) and (2) fixed dose and duration (patients) were conducted at clinical pharmacology and intensive care units. A total of 103 subjects (67 male volunteers and 36 patients with severe sepsis) were administered exogenous, 10-min IV infusions (three ascending doses) or 24-72 h continuous (132.5-200 U kg-124 h-1) IV infusion with/without preceding loading dose and experimental endotoxemia for evaluations of pharmacokinetics, pharmacodynamics, safety parameters, antigenicity, inflammatory markers, and outcomes. Results: Linearity and dose-proportionality were shown during 10-min infusions. The relatively short elimination half-life necessitated a loading dose to achieve stable enzyme levels. Pharmacokinetic parameters in volunteers and patients were similar. Innate immunity response was not significantly influenced by AP, while renal function significantly improved in sepsis patients. Conclusions: The pharmacokinetics of exogenous AP is linear, dose-proportional, exhibit a short half-life, and are not influenced by renal impairment or dialysis

    Supplementation of diet with krill oil protects against experimental rheumatoid arthritis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the efficacy of standard fish oil has been the subject of research in arthritis, the effect of krill oil in this disease has yet to be investigated. The objective of the present study was to evaluate a standardised preparation of krill oil and fish oil in an animal model for arthritis.</p> <p>Methods</p> <p>Collagen-induced arthritis susceptible DBA/1 mice were provided <it>ad libitum </it>access to a control diet or diets supplemented with either krill oil or fish oil throughout the study. There were 14 mice in each of the 3 treatment groups. The level of EPA + DHA was 0.44 g/100 g in the krill oil diet and 0.47 g/100 g in the fish oil diet. Severity of arthritis was determined using a clinical scoring system. Arthritis joints were analysed by histopathology and graded. Serum samples were obtained at the end of the study and the levels of IL-1α, IL-1β, IL-7, IL-10, IL-12p70, IL-13, IL-15, IL-17 and TGF-β were determined by a Luminex™ assay system.</p> <p>Results</p> <p>Consumption of krill oil and supplemented diet significantly reduced the arthritis scores and hind paw swelling when compared to a control diet not supplemented with EPA and DHA. However, the arthritis score during the late phase of the study was only significantly reduced after krill oil administration. Furthermore, mice fed the krill oil diet demonstrated lower infiltration of inflammatory cells into the joint and synovial layer hyperplasia, when compared to control. Inclusion of fish oil and krill oil in the diets led to a significant reduction in hyperplasia and total histology score. Krill oil did not modulate the levels of serum cytokines whereas consumption of fish oil increased the levels of IL-1α and IL-13.</p> <p>Conclusions</p> <p>The study suggests that krill oil may be a useful intervention strategy against the clinical and histopathological signs of inflammatory arthritis.</p

    1H magnetic resonance spectroscopy in human hydrocephalus

    No full text
    PURPOSE: To evaluate cerebral metabolism in clinical hydrocephalus with (1)H magnetic resonance spectroscopy (MRS). MATERIALS AND METHODS: In 24 children and adults with progressive, arrested, or normal pressure hydrocephalus, long-echo time (1)H MR spectra were acquired from periventricular white matter and intraventricular cerebrospinal fluid (CSF). Metabolite ratios, and the presence of lactate, were compared with 38 age-matched controls. RESULTS: Metabolite ratios of patients were within the 95% confidence interval (CI) of controls. A small lactate resonance was detected in 20% of control and hydrocephalic subjects. Lactate was consistently visible in CSF spectra, though lactate concentrations were normal. The CSF lactate T(2) was long in comparison with the known intracellular metabolite T(2) relaxation times. In three neonates with hydrocephalus and spina bifida, 3-hydroxybutyrate was detected in CSF in vivo. CONCLUSION: Within the limits of the present methods, (1)H MRS could not detect cerebral metabolic abnormalities in human hydrocephalus and provided no additional diagnostic information. The long T(2) of lactate in CSF explains its high visibility. Hence, the detection of lactate in spectra acquired from voxels that contain CSF does not necessarily imply cerebral ischemi

    Role of magnesium in the reduction of ischemic depolarization and lesion volume after experimental subarachnoid hemorrhage

    No full text
    OBJECT: Ischemia-induced tissue depolarizations probably play an important role in the pathophysiology of cerebral ischemia caused by parent vessel occlusion. Their role in ischemia caused by subarachnoid hemorrhage (SAH) remains to be investigated. The authors determined whether ischemic depolarizations (IDs) or cortical spreading depressions (CSDs) occur after SAH, and how these relate to the extent of tissue injury measured on magnetic resonance (MR) images. In addition, they assessed whether administration of MgSO4 reduces depolarization time and lesion volume. METHODS: By means of the endovascular suture model, experimental SAH was induced in 52 rats, of which 37 were appropriate for analysis, including four animals that underwent sham operations. Before induction of SAH, serum Mg++ levels were measured and 90 mg/kg intravascular MgSO4 or saline was given. Extracellular direct current potentials were continuously recorded from six Ag/AgCl electrodes, before and up to 90 minutes following SAH, after which serum Mg++ levels were again measured. Next, animals were transferred to the MR imaging magnet for diffusion-weighted (DW) MR imaging. Depolarization times per electrode were averaged to determine a mean depolarization time per animal. No depolarizations occurred in sham-operated animals. Ischemic depolarizations occurred at all electrodes in all animals after SAH. Only two animals displayed a single spreading depression-like depolarization. The mean duration of the ID time was 41 +/- 25 minutes in the saline-treated controls and 31 +/- 30 minutes in the Mg++-treated animals (difference 10 minutes: p = 0.31). Apparent diffusion coefficient (ADC) maps of tissue H2O, obtained using DW images approximately 2.5 hours after SAH induction, demonstrated hypointensities in both hemispheres, but predominantly in the ipsilateral cortex. No ADC abnormalities were found in sham-operated animals. The mean lesion volume, as defined on the basis of a significant ADC reduction, was 0.32 +/- 0.42 ml in saline-treated controls and 0.11 +/- 0.06 ml in Mg++-treated animals (difference 0.21 ml; p = 0.045). Serum Mg++ levels were significantly elevated in the Mg++-treated group. CONCLUSIONS: On the basis of their data, the authors suggest that CSDs play a minor role, if any, in the acute pathophysiology of SAH. Administration of Mg++ reduces the cerebral lesion volume that is present during the acute period after SAH. The neuroprotective value of Mg++ after SAH may, in part, be explained by a reduction in the duration of the ID of brain cell

    Neurobehavioral status and health-related quality of life in newly diagnosed high-grade glioma patients

    No full text
    To evaluate the health-related quality of life (HRQOL) and cognitive functioning of high-grade glioma patients in the postneurosurgical period. The HRQOL, as assessed by the Short-Form Health Survey-36, tumor-specific symptoms, and objective and subjective neuropsychologic functioning, of 68 newly diagnosed glioma patients were compared with that of 50 patients with non-small-cell lung cancer (NSCLC) and to age- and sex-matched healthy controls. The association between tumor lateralization, extent of resection, and use of medication, and the HRQOL outcomes was also investigated. The HRQOL of the two patient groups was similar but significantly lower than that of the healthy controls. Glioma patients reported significantly more neurologic symptoms and poorer objective and subjective neuropsychologic functioning than the NSCLC patients. Using healthy controls as the reference group, cognitive impairment assessed at the individual patient level was observed in all glioma patients and 52% of the NSCLC patients. Poor performance on timed tasks in the glioma group could be attributed, in large part, to visual and motor deficits. Tumor lateralization was found to affect neuropsychologic functioning in a predictable manner. The extent of resection was not related significantly to neuropsychologic functioning. Corticosteroid use was associated with better recognition memory, whereas antiepileptic drug use was correlated negatively with working memory capacity. The general HRQOL of glioma patients is similar to that of patients with NSCLC. However, they suffer from a number of condition-specific neurologic and neuropsychologic problems that have a significant impact on their daily lives in the postsurgical period, before treatment with radiotherap
    corecore