67 research outputs found

    Mass-polariton theory of light in dispersive media

    Full text link
    We have recently shown that the electromagnetic field in a medium is made of mass-polariton (MP) quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [Phys. Rev. A 95, 063850 (2017)]. In this work, we generalize the MP theory of light for dispersive media assuming that absorption and scattering losses are very small. Following our previous work, we present two different approaches to the theory of light: (1) the MP quasiparticle theory, which is derived by only using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics of the medium under the influence of optical forces. For the coupled MP state of a single photon and the medium, we obtain the total MP momentum of the Minkowski form while the field's share of the momentum is equal to the Abraham momentum. We also show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for nondispersive media. We also carry out simulations for optimal measurements of atomic displacements related to the MDW in silicon. In the simulations, we consider different waveguide cross-sections and optical pulse widths and account for the breakdown threshold irradiance of materials. We also compare the MP theory to previous theories of the momentum of light in a dispersive medium. We show that our generalized MP theory resolves all the problems related to the Abraham-Minkowski dilemma in a dispersive medium

    Noiseless amplification of weak coherent fields without external energy

    Full text link
    According to the fundamental laws of quantum optics, noise is necessarily added to the system when one tries to clone or amplify a quantum state. However, it has recently been shown that the quantum noise related to the operation of a linear phase-insensitive amplifier can be avoided when the requirement of a deterministic operation is relaxed. Nondeterministic noiseless linear amplifiers are therefore realizable. Usually nondeterministic amplifiers rely on using single photon sources. We have, in contrast, recently proposed an amplification scheme in which no external energy is added to the signal, but the energy required to amplify the signal originates from the stochastic fluctuations in the field itself. Applying our amplification scheme, we examine the amplifier gain and the success rate as well as the properties of the output states after successful and failed amplification processes. We also optimize the setup to find the maximum success rates in terms of the reflectivities of the beam splitters used in the setup. In addition, we discuss the nonidealities related to the operation of our setup and the relation of our setup with the previous setups.Comment: arXiv admin note: substantial text overlap with arXiv:1309.428

    Thermal balance and photon-number quantization in layered structures

    Full text link
    The quantization of the electromagnetic field in lossy and dispersive dielectric media has been widely studied during the last few decades. However, several aspects of energy transfer and its relation to consistently defining position-dependent ladder operators for the electromagnetic field in nonequilibrium conditions have partly escaped the attention. In this work we define the position-dependent ladder operators and an effective local photon-number operator that are consistent with the canonical commutation relations and use these concepts to describe the energy transfer and thermal balance in layered geometries. This approach results in a position-dependent photon-number concept that is simple and consistent with classical energy conservation arguments. The operators are formed by first calculating the vector potential operator using Green's function formalism and Langevin noise source operators related to the medium and its temperature, and then defining the corresponding position-dependent annihilation operator that is required to satisfy the canonical commutation relations in arbitrary geometry. Our results suggest that the effective photon number associated with the electric field is generally position dependent and enables a straightforward method to calculate the energy transfer rate between the field and the local medium. In particular, our results predict that the effective photon number in a vacuum cavity formed between two lossy material layers can oscillate as a function of the position suggesting that also the local field temperature oscillates. These oscillations are expected to be directly observable using relatively straightforward experimental setups in which the field-matter interaction is dominated by the coupling to the electric field

    Generalized noise terms for the quantized fluctuational electrodynamics

    Full text link
    The quantization of optical fields in vacuum has been known for decades, but extending the field quantization to lossy and dispersive media in nonequilibrium conditions has proven to be complicated due to the position-dependent electric and magnetic responses of the media. In fact, consistent position-dependent quantum models for the photon number in resonant structures have only been formulated very recently and only for dielectric media. Here we present a general position-dependent quantized fluctuational electrodynamics (QFED) formalism that extends the consistent field quantization to describe the photon number also in the presence of magnetic field-matter interactions. It is shown that the magnetic fluctuations provide an additional degree of freedom in media where the magnetic coupling to the field is prominent. Therefore, the field quantization requires an additional independent noise operator that is commuting with the conventional bosonic noise operator describing the polarization current fluctuations in dielectric media. In addition to allowing the detailed description of field fluctuations, our methods provide practical tools for modeling optical energy transfer and the formation of thermal balance in general dielectric and magnetic nanodevices. We use the QFED to investigate the magnetic properties of microcavity systems to demonstrate an example geometry in which it is possible to probe fields arising from the electric and magnetic source terms. We show that, as a consequence of the magnetic Purcell effect, the tuning of the position of an emitter layer placed inside a vacuum cavity can make the emissivity of a magnetic emitter to exceed the emissivity of a corresponding electric emitter

    Monte Carlo study of non-quasiequilibrium carrier dynamics in III–N LEDs

    Get PDF
    Hot carrier effects have been observed in recent measurements of III–Nitride (III–N) light-emitting diodes. In this paper we carry out bipolar Monte Carlo simulations for electrons and holes in a typical III–N multi-quantum well (MQW) LED. According to our simulations, significant non-quasiequilibrium carrier distributions exist in the barrier layers of the structure. This is observed as average carrier energies much larger than the 1.5kBT1.5kBT corresponding to quasi-equilibrium. Due to the small potential drop over the MQW being modest, the non-quasiequilibrium carriers can be predominantly ascribed to nnp and npp Auger processes taking place in the QWs. Further investigations are needed to determine the effects of hot carriers on the macroscopic device characteristics of real devices

    Photon momentum and optical forces in cavities

    Get PDF
    During the past century, the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical forces in cavity structures in the cases of dynamical and steady-state fields. In the description of the single-photon transmission process, we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles with the Minkowski form momentum. The Abraham momentum can be associated to the electromagnetic field part of the coupled polariton state. The polariton with the Minkowski momentum is shown to obey the uniform center of mass of energy motion that has previously been interpreted to support only the Abraham momentum. When describing the steady-state nonequilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical tools for modeling optical energy transfer and the formation of thermal balance in nanodevices as well as studying electromagnetic forces in optomechanical devices

    Bipolar Monte Carlo Simulation of Hot Carriers In III-N LEDs

    Get PDF
    We carry out bipolar Monte Carlo (MC) simulations of electron and hole transport in a multi-quantum well light-emitting diode with an electron-blocking layer. The MC simulation accounts for the most important interband recombination and intraband scattering processes and solves self-consistently for the non-quasiequilibrium transport. The fully bipolar MC simulator results in better convergence than our previous Monte Carlo-drift-diffusion (MCDD) model and also shows clear signatures of hot holes. Accounting for both hot electron and hot hole effects increases the total current and decreases the efficiency especially at high bias voltages. We also present our in-house full band structure calculations for GaN to be coupled later with the MC simulation in order to enable even more detailed predictions of device operation

    Cooling of radiative quantum-dot excitons by terahertz radiation: A spin-resolved Monte Carlo carrier dynamics model

    Full text link
    We have developed a theoretical model to analyze the anomalous cooling of radiative quantum dot (QD) excitons by THz radiation reported by Yusa et al [Proc. 24th ICPS, 1083 (1998)]. We have made three-dimensional (3D) modeling of the strain and the piezoelectric field and calculated the 3D density of states of strain induced quantum dots. On the basis of this analysis we have developed a spin dependent Monte Carlo model, which describes the carrier dynamics in QD's when the intraband relaxation is modulated by THz radiation. We show that THz radiation causes resonance transfer of holes from dark to radiative states in strain-induced QD's. The transition includes a spatial transfer of holes from the piezoelectric potential mimima to the deformation potential minimum. This phenomenon strongly enhances the QD ground state luminescence at the expense of the luminescence from higher states. Our model also reproduces the delayed flash of QD ground state luminescence, activated by THz radiation even 1\sim1 s after the carrier generation. Our simulations suggest a more general possibility to cool the radiative exciton subsystem in optoelectronic devices.Comment: 18 pages, 1 table, 8 figures, submitted to Physical Review B v2: major conceptual changes. The article was extended considerably to suit Physical Review B (instead of Physical Review Letters

    Temperature dependence of droop onset in optically pumped intrinsic InGaAs/InP heterostructures

    Get PDF
    Although conventional III-V compound semiconductors are often considered not to exhibit an efficiency droop, a pronounced low temperature droop was recently measured in AlGaInP/GaAs multi-quantum well structures. In this work, we investigate the efficiency droop in simple optically pumped lattice matched InGaAs/InP single well heterostructures to exclude charge transport related effects from the measurements. The results show that droop is present in this very simplistic setup and, furthermore, starts approximately at the same carrier density as in typical III-N structures. Our results suggest that in its most fundamental form, droop can be explained by Auger-like processes.Peer reviewe
    corecore