31 research outputs found

    Soluble urokinase-type plasminogen activator receptor levels in patients with burn injuries and inhalation trauma requiring mechanical ventilation: an observational cohort study

    Get PDF
    Soluble urokinase-type plasminogen activator receptor (suPAR) has been proposed as a biologic marker of fibrinolysis and inflammation. The aim of this study was to investigate the diagnostic and prognostic value of systemic and pulmonary levels of suPAR in burn patients with inhalation trauma who need mechanical ventilation. suPAR was measured in plasma and nondirected lung-lavage fluid of mechanically ventilated burn patients with inhalation trauma. The samples were obtained on the day of inhalation trauma and on alternate days thereafter until patients were completely weaned from the mechanical ventilator. Mechanically ventilated patients without burns and without pulmonary disease served as controls. Systemic levels of suPAR in burn patients with inhalation trauma were not different from those in control patients. On admission and follow up, pulmonary levels of suPAR in patients with inhalation trauma were significantly higher compared with controls. Pulmonary levels of suPAR highly correlated with pulmonary levels of interleukin 6, a marker of inflammation, and thrombin-antithrombin complexes, markers of coagulation, but not plasminogen activator activity, a marker of fibrinolysis. Systemic levels of suPAR were predictive of the duration of mechanical ventilation and length of intensive care unit (ICU) stay. Duration of mechanical ventilation and length of ICU stay were significantly longer in burn-injury patients with systemic suPAR levels > 9.5 ng/ml. Pulmonary levels of suPAR are elevated in burn patients with inhalation trauma, and they correlate with pulmonary inflammation and coagulation. Although pulmonary levels of suPAR may have diagnostic value in burn-injury patients, systemic levels of suPAR have prognostic valu

    Association between pre-operative biological phenotypes and postoperative pulmonary complications: An unbiased cluster analysis

    No full text
    BACKGROUND: Biological phenotypes have been identified within several heterogeneous pulmonary diseases, with potential therapeutic consequences. OBJECTIVE: To assess whether distinct biological phenotypes exist within surgical patients, and whether development of postoperative pulmonary complications (PPCs) and subsequent dependence of intra-operative positive end-expiratory pressure (PEEP) differ between such phenotypes. SETTING: Operating rooms of six hospitals in Europe and USA. DESIGN: Secondary analysis of the 'PROtective Ventilation with HIgh or LOw PEEP' trial. PATIENTS: Adult patients scheduled for abdominal surgery who are at risk of PPCs. INTERVENTIONS: Measurement of pre-operative concentrations of seven plasma biomarkers associated with inflammation and lung injury. MAIN OUTCOME MEASURES: We applied unbiased cluster analysis to identify biological phenotypes. We then compared the proportion of patients developing PPCs within each phenotype, and associations between intra-operative PEEP levels and development of PPCs among phenotypes. RESULTS: In total, 242 patients were included. Unbiased cluster analysis clustered the patients within two biological phenotypes. Patients with phenotype 1 had lower plasma concentrations of TNF-α (3.8 [2.4 to 5.9] vs. 10.2 [8.0 to 12.1] pg ml; P < 0.001), IL-6 (2.3 [1.5 to 4.0] vs. 4.0 [2.9 to 6.5] pg ml; P < 0.001) and IL-8 (4.7 [3.1 to 8.1] vs. 8.1 [6.0 to 13.9] pg ml; P < 0.001). Phenotype 2 patients had the highest incidence of PPC (69.8 vs. 34.2% in type 1; P < 0.001). There was no interaction between phenotype and PEEP level for the development of PPCs (43.2% in high PEEP vs. 25.6% in low PEEP in phenotype 1, and 73.6% in high PEEP and 65.7% in low PEEP in phenotype 2; P for interaction = 0.503). CONCLUSION: Patients at risk of PPCs and undergoing open abdominal surgery can be clustered based on pre-operative plasma biomarker concentrations. The two identified phenotypes have different incidences of PPCs. Biologic phenotyping could be useful in future randomised controlled trials of intra-operative ventilation. TRIAL REGISTRATION: The PROtective Ventilation with HIgh or LOw PEEP trial, including the substudy from which data were used for the present analysis, was registered at ClinicalTrials.gov (NCT01441791)

    Early increase in anti-inflammatory biomarkers is associated with the development of multiple organ dysfunction syndrome in severely injured trauma patients

    No full text
    Background As a result of improvements in the early resuscitation phase of trauma, mortality is largely driven by later mortality due to multiple organ dysfunction syndrome (MODS), which may be mediated by an early overdrive in the host immune response. If patients at risk for MODS could be identified early, preventive treatment measures could be taken. The aim of this study is to investigate whether specific biomarkers are associated with MODS. Methods Multiple trauma patients presenting to the Amsterdam University Medical Centers, location Academic Medical Center, between 2012 and 2018 with an Injury Severity Score of 16 or higher were sampled on arrival at the emergency department. A wide variety of inflammatory cytokines, endothelial and lung-specific markers were determined. Comparisons were made between patients with and without MODS. Univariate and multivariate logistic regression was used to determine associations between specific biomarkers and MODS. A p value of 0.05 was considered to be statistically significant. Results In total, 147 multiple trauma patients were included. Of these, 32 patients developed MODS (21.7%). Patients who developed MODS were more severely injured, had more traumatic brain injury and showed more deranged markers of coagulation when compared with patients without MODS. Overall, both proinflammatory and anti-inflammatory cytokines were higher in patients with MODS, indicative of a host immune reaction. In the multivariate analysis, the combination of anti-inflammatory proteins interleukin 1 receptor antagonist (IL-1RA) (OR 1.27 (1.07-1.51), p=0.002) and Clara cell protein 16 (CC-16) (1.06 (1.01-1.05), p=0.031) was most strongly associated with the development MODS. Conclusions In trauma, anti-inflammatory proteins IL-1RA and CC-16 have the potential to early identify patients at risk for development of MODS. Further research is warranted to prospectively validate these results

    The impact of biological age of red blood cell on in vitro endothelial activation markers

    No full text
    Introduction: Blood donor characteristics influence red blood cell transfusion outcomes. As donor sex affects the distribution of young to old RBCs in the circulation, we hypothesized that the amount of circulating young RBCs in the blood product are associated with immune suppression. Materials and Methods: Blood samples were collected from healthy volunteers and density fractionated into young and old subpopulations. In an activated endothelial cell model, RBC adhesion to endothelium and secretion of endothelial activation markers were assessed. The impact of RBC biological age was also assessed in a T cell proliferation assay and in a whole blood stimulation assay. Results: After Percoll fractionation, young RBCs contained more reticulocytes compared to old RBCs. Young RBCs associated with lower levels of E-selectin, ICAM-1, and vWF from activated endothelial cells compared to old RBCs. RBC subpopulations did not affect T cell proliferation or cytokine responses following whole blood stimulation. Conclusion: Young RBCs contain more reticulocytes which are associated with lower levels of endothelial activation markers compared to old RBCs

    The impact of biological age of red blood cell on in vitro endothelial activation markers

    Get PDF
    Introduction: Blood donor characteristics influence red blood cell transfusion outcomes. As donor sex affects the distribution of young to old RBCs in the circulation, we hypothesized that the amount of circulating young RBCs in the blood product are associated with immune suppression. Materials and Methods: Blood samples were collected from healthy volunteers and density fractionated into young and old subpopulations. In an activated endothelial cell model, RBC adhesion to endothelium and secretion of endothelial activation markers were assessed. The impact of RBC biological age was also assessed in a T cell proliferation assay and in a whole blood stimulation assay. Results: After Percoll fractionation, young RBCs contained more reticulocytes compared to old RBCs. Young RBCs associated with lower levels of E-selectin, ICAM-1, and vWF from activated endothelial cells compared to old RBCs. RBC subpopulations did not affect T cell proliferation or cytokine responses following whole blood stimulation. Conclusion: Young RBCs contain more reticulocytes which are associated with lower levels of endothelial activation markers compared to old RBCs

    Influence of bacterial and alveolar cell co-culture on microbial VOC production using HS-GC/MS

    No full text
    Volatile organic compounds (VOCs) found in exhaled breath continue to garner interest as an alternative diagnostic tool in pulmonary infections yet, their clinical integration remains a challenge with difficulties in translating identified biomarkers. Alterations in bacterial metabolism secondary to host nutritional availability may explain this but is often inadequately modelled in vitro. The influence of more clinically relevant nutrients on VOC production for two common respiratory pathogens was investigated. VOCs from Staphylococcus aureus (S.aureus) and Pseudomonas aeruginosa (P.aeruginosa) cultured with and without human alveolar A549 epithelial cells were analyzed using headspace extraction coupled with gas chromatography-mass spectrometry. Untargeted and targeted analyses were performed, volatile molecules identified from published data, and the differences in VOC production evaluated. Principal component analysis (PCA) could differentiate alveolar cells from either S. aureus or P. aeruginosa when cultured in isolation based on PC1 (p = 0.0017 and 0.0498, respectively). However, this separation was lost for S. aureus (p = 0.31) but not for P. aeruginosa (p = 0.028) when they were cultured with alveolar cells. S. aureus cultured with alveolar cells led to higher concentrations of two candidate biomarkers, 3-methyl-1-butanol (p = 0.001) and 3-methylbutanal (p = 0.002) when compared to S. aureus, alone. P. aeruginosa metabolism resulted in less generation of pathogen-associated VOCs when co-cultured with alveolar cells compared to culturing in isolation. VOC biomarkers previously considered indicative of bacterial presence are influenced by the local nutritional environment and this should be considered when evaluating their biochemical origin

    TLR2 deficiency aggravates lung injury caused by mechanical ventilation

    No full text
    Innate immunity pathways are found to play an important role in ventilator-induced lung injury. We analyzed pulmonary expression of Toll-like receptor 2 (TLR2) in humans and mice and determined the role of TLR2 in the pathogenesis of ventilator-induced lung injury in mice. Toll-like receptor 2 gene expression was analyzed in human bronchoalveolar lavage fluid (BALF) cells and murine lung tissue after 5 h of ventilation. In addition, wild-type (WT) and TLR2 knockout (KO) mice were ventilated with either lower tidal volumes (VT) of 7 mL/kg with positive end-expiratory pressure (PEEP) or higher VT of 15 mL/kg without PEEP for 5 h. Spontaneously breathing mice served as controls. Total protein and immunoglobulin M levels in BALF, neutrophil influx into the alveolar compartment, and interleukin 6 (IL-6), IL-1β, and keratinocyte-derived chemokine concentrations in lung tissue homogenates were measured. We observed enhanced TLR2 gene expression in BALF cells of ventilated patients and in lung tissue of ventilated mice. In WT mice, ventilation with higher VT without PEEP resulted in lung injury and inflammation with higher immunoglobulin M levels, neutrophil influx, and levels of inflammatory mediators compared with controls. In TLR2 KO mice, neutrophil influx and IL-6, IL-1β, and keratinocyte-derived chemokine were enhanced by this ventilation strategy. Ventilation with lower VT with PEEP only increased neutrophil influx and was similar in WT and TLR2 KO mice. In summary, injurious ventilation enhances TLR2 expression in lungs. Toll-like receptor 2 deficiency does not protect lungs from ventilator-induced lung injury. In contrast, ventilation with higher VT without PEEP aggravates inflammation in TLR2 KO mic

    Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients

    No full text
    Purpose: We investigated the prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) on day 1 in patients with the acute respiratory distress syndrome (ARDS) for intensive care unit (ICU) mortality and compared it with established disease severity scores on day 1. Methods: suPAR was determined batchwise in plasma obtained within 24 h after admission. Results: 632 ARDS patients were included. Significantly (P = 0.02) higher median levels of suPAR were found with increasing severity of ARDS: 5.9 ng/ml [IQR 3.1–12.8] in mild ARDS (n = 82), 8.4 ng/ml [IQR 4.1–15.0] in moderate ARDS (n = 333), and 9.0 ng/ml [IQR 4.5–16.0] in severe ARDS (n = 217). Non-survivors had higher median levels of suPAR [12.5 ng/ml (IQR 5.1–19.5) vs. 7.4 ng/ml (3.9–13.6), P < 0.001]. The area under the receiver operator characteristic curve (ROC-AUC) for mortality of suPAR (0.62) was lower than the ROC-AUC of the APACHE IV score (0.72, P = 0.007), higher than that of the ARDS definition classification (0.53, P = 0.005), and did not differ from that of the SOFA score (0.68, P = 0.07) and the oxygenation index (OI) (0.58, P = 0.29). Plasma suPAR did not improve the discrimination of the established disease severity scores, but did improve net reclassification of the APACHE score (29 %), SOFA score (23 %), OI (38 %), and Berlin definition classification (39 %). Conclusion: As a single biological marker, the prognostic value for death of plasma suPAR in ARDS patients is low. Plasma suPAR, however, improves the net reclassification, suggesting a potential role for suPAR in ICU mortality prediction models

    Plasma suPAR as a prognostic biological marker for ICU mortality in ARDS patients

    No full text
    Purpose: We investigated the prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) on day 1 in patients with the acute respiratory distress syndrome (ARDS) for intensive care unit (ICU) mortality and compared it with established disease severity scores on day 1. Methods: suPAR was determined batchwise in plasma obtained within 24 h after admission. Results: 632 ARDS patients were included. Significantly (P = 0.02) higher median levels of suPAR were found with increasing severity of ARDS: 5.9 ng/ml [IQR 3.1–12.8] in mild ARDS (n = 82), 8.4 ng/ml [IQR 4.1–15.0] in moderate ARDS (n = 333), and 9.0 ng/ml [IQR 4.5–16.0] in severe ARDS (n = 217). Non-survivors had higher median levels of suPAR [12.5 ng/ml (IQR 5.1–19.5) vs. 7.4 ng/ml (3.9–13.6), P < 0.001]. The area under the receiver operator characteristic curve (ROC-AUC) for mortality of suPAR (0.62) was lower than the ROC-AUC of the APACHE IV score (0.72, P = 0.007), higher than that of the ARDS definition classification (0.53, P = 0.005), and did not differ from that of the SOFA score (0.68, P = 0.07) and the oxygenation index (OI) (0.58, P = 0.29). Plasma suPAR did not improve the discrimination of the established disease severity scores, but did improve net reclassification of the APACHE score (29 %), SOFA score (23 %), OI (38 %), and Berlin definition classification (39 %). Conclusion: As a single biological marker, the prognostic value for death of plasma suPAR in ARDS patients is low. Plasma suPAR, however, improves the net reclassification, suggesting a potential role for suPAR in ICU mortality prediction models
    corecore