62 research outputs found

    Phenomenology of SUSY with scalar sequestering

    Full text link
    The defining feature of scalar sequestering is that the MSSM squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition - scalar masses vanish while gaugino and Higgsino masses are unsuppressed - is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B_mu term also drives the Higgs soft masses to -|mu|^2. Thus the supersymmetric contribution to the Higgs mass matrix from the mu-term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (mu > TeV) than scalar Higgses (m_A ~ few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.Comment: 16 pages and 3 figure

    Ditau jets in Higgs searches

    Get PDF
    Understanding and identifying ditau jets -- jets consisting of pairs of tau particles, can be of crucial importance and may even turn out to be a necessity if the Higgs boson decays dominantly to new light scalars which, on the other hand, decay to tau pairs. As often seen in various models of BSM such as in the NMSSM, Higgs portals etc., the lightness of these new states ensures their large transverse momenta and, as a consequence, the collinearity of their decay products. We show that the non-standard signatures of these objects, which can easily be missed by standard analysis techniques, can be superbly exploited in an analysis based on subjet observables. When combined with additional selection strategies, this analysis can even facilitate an early discovery of the Higgs boson. To be specific, a light Higgs can be found with S/B≳5S/\sqrt{B} \gtrsim 5 from L≃12fbβˆ’1\mathcal {L} \simeq 12 fb^{-1} of data. We combine all these observables into a single discriminating likelihood that can be employed toward the construction of a realistic and standalone ditau tagger.Comment: 9 pages, 9 figures. References added, typos corrected, published versio
    • …
    corecore