81 research outputs found

    Inflammatory Diseases – An Analysis of the Underlying Biological Triggers

    Get PDF

    Advances in proteomics: characterization of the innate immune system after birth and during inflammation

    Get PDF
    Proteomics is the characterization of the protein composition, the proteome, of a biological sample. It involves the large-scale identification and quantification of proteins, peptides, and post-translational modifications. This review focuses on recent developments in mass spectrometry-based proteomics and provides an overview of available methods for sample preparation to study the innate immune system. Recent advancements in the proteomics workflows, including sample preparation, have significantly improved the sensitivity and proteome coverage of biological samples including the technically difficult blood plasma. Proteomics is often applied in immunology and has been used to characterize the levels of innate immune system components after perturbations such as birth or during chronic inflammatory diseases like rheumatoid arthritis (RA) and inflammatory bowel disease (IBD). In cancers, the tumor microenvironment may generate chronic inflammation and release cytokines to the circulation. In these situations, the innate immune system undergoes profound and long-lasting changes, the large-scale characterization of which may increase our biological understanding and help identify components with translational potential for guiding diagnosis and treatment decisions. With the ongoing technical development, proteomics will likely continue to provide increasing insights into complex biological processes and their implications for health and disease. Integrating proteomics with other omics data and utilizing multi-omics approaches have been demonstrated to give additional valuable insights into biological systems

    Characterization of the porcine synovial fluid proteome and a comparison to the plasma proteome

    Get PDF
    AbstractSynovial fluid is present in all joint cavities, and protects the articular cartilage surfaces in large by lubricating the joint, thus reducing friction. Several studies have described changes in the protein composition of synovial fluid in patients with joint disease. However, the protein concentration, content, and synovial fluid volume change dramatically during active joint diseases and inflammation, and the proteome composition of healthy synovial fluid is incompletely characterized.We performed a normative proteomics analysis of porcine synovial fluid, and report data from optimizing proteomic methods to investigate the proteome of healthy porcine synovial fluid (Bennike et al., 2014 [1]). We included an evaluation of different proteolytic sample preparation techniques, and an analysis of posttranslational modifications with a focus on glycosylation. We used pig (Sus Scrofa) as a model organism, as the porcine immune system is highly similar to human and the pig genome is sequenced. Furthermore, porcine model systems are commonly used large animal models to study several human diseases.In addition, we analyzed the proteome of human plasma, and compared the proteomes to the obtained porcine synovial fluid proteome. The proteome of the two body fluids were found highly similar, underlining the detected plasma derived nature of many synovial fluid components. The healthy porcine synovial fluid proteomics data, human rheumatoid arthritis synovial fluid proteomics data used in the method optimization, human plasma proteomics data, and search results, have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier http://www.ebi.ac.uk/pride/archive/projects/PXD000935

    Time-course investigation of <i>Phytophthora infestans</i> infection of potato leaf from three cultivars by quantitative proteomics

    Get PDF
    AbstractPotato late blight is one the most important crop diseases worldwide. Even though potato has been studied for many years, the potato disease late blight still has a vast negative effect on the potato production [1–3]. Late blight is caused by the pathogen Phytophthora infestans (P. infestans), which initiates infection through leaves. However, the biological activities during different stages of infection are poorly described, and could enable novel or improved ways of defeating late blight infection [4]. Therefore, we investigated the interactions between P. infestans (mixed strain culture) and potato (Solanum tuberosum). Three commercially available field potato cultivars of different resistance to late blight infection; Kuras (moderate), Sarpo Mira (highly resistant) and Bintje (very susceptable) were grown under controlled green house conditions and inoculated with a diversity of P. infestans populations.We used label-free quantitative proteomics to investigate the infection with P. infestans in a time-course study over 258h. Several key issues limits proteome analysis of potato leaf tissue [5–7]. Firstly, the immense complexity of the plant proteome, which is further complicated by the presence of highly abundant proteins, such as ribulose bisphosphate carboxylase/oxygenase (RuBisCO). Secondly, plant leaf and potato, in particular, contain abundant levels amounts of phenols and polyphenols, which hinder or completely prevent a successful protein extraction. Hitherto, protein profiling of potato leaf tissues have been limited to few proteome studies and only 1484 proteins have been extracted and comprehensively described [5,8,9]. We here present the detailed methods and raw data by optimized gel-enhanced label free quantitative approach. The methodology enabled us to detect and quantify between 3248 and 3529 unique proteins from each cultivar, and up to 758 P. infestans derived proteins. The complete dataset is available via ProteomeXchange, with the identifier http://www.ebi.ac.uk/pride/archive/projects/PXD002767
    • …
    corecore