6 research outputs found

    Laccase–TEMPO as an Efficient System for Doxorubicin Removal from Wastewaters

    No full text
    A large number of drugs are used to treat different diseases, and thus to improve the quality of life for humans. These represent a real ecological threat, as they end up in soil or ground waters in amounts that can affect the environment. Among these drugs, doxorubicin is a highly cytotoxic compound used as anticancer medicine. Doxorubicin can be efficiently removed from wastewater or polluted water using a simple enzymatic (biocatalytic) system, employing the oxidoreductase enzyme laccase and a stable organic nitroxide-free radical, TEMPO. Results presented in this work (as percentage of removal) were obtained at pH 5 and 7, after 2, 4, 6, and 24 h, using different ratios between doxorubicin, laccase, and TEMPO. It was shown that longer time, as well as an increased amount of catalyst, led to a higher percentage of removal, up to 100%. The influence of all these parameters is also discussed. In this way it was shown that the laccase–TEMPO biocatalytic system is highly efficient in the removal of the anticancer drug doxorubicin from wastewaters

    Resilience-Driven Optimal Sizing of Energy Storage Systems in Remote Microgrids

    No full text
    As climate changes intensify the frequency of severe outages, the resilience of electricity supply systems becomes a major concern. In order to simultaneously combat the climate problems and ensure electricity supply in isolated areas, renewable energy sources (RES) have been widely implemented in recent years. However, without the use of energy storage, they show low reliability due to their intermittent output. Therefore, this article proposes a methodology to achieve the optimal sizing of an energy storage system (ESS) to ensure predefined periods of safe operation for an ensemble consisting of multiple loads, renewable energy sources and controllable generators, located in a remote microgrid. In this regard, a mixed integer linear programming (MILP) model has been proposed to reduce the outages impact of critical loads by calculating the optimal ESS capacity and defining the proper resources management within the off-grid microgrid, while ensuring a cost-effective operation of its components

    Novel Antitumor Agents Based on Fluorescent Benzofurazan Derivatives and Mesoporous Silica

    No full text
    Two novel fluorescent mesoporous silica-based hybrid materials were obtained through the covalent grafting of [4-hydrazinyl-7-nitrobenz-[2,1,3-d]-oxadiazole (NBDH) and N1-(7-nitrobenzo[c][1,2,5]-oxadiazol-4-yl) benzene-1,2-diamine (NBD-PD), respectively, inside the channels of mesoporous silica SBA-15. The presence of fluorescent organic compounds (nitrobenzofurazan derivatives) was confirmed by infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), thermal analysis (TG), and fluorescence spectroscopy. The nitrogen physisorption analysis showed that the nitrobenzofurazan derivatives were distributed uniformly on the internal surface of SBA-15, the immobilization process having a negligible effect on the structure of the support. Their antioxidant activity was studied by measuring the ability to reduce free radicals DPPH (free radical scavenging activity), in order to formulate potential applications of the materials obtained. Cytotoxicity of the newly synthesized materials, SBA-NBDH and SBA-NBD-PD, was evaluated on human B16 melanoma cells. The morphology of these cells, internalization and localization of the investigated materials in melanoma and fibroblast cells were examined through fluorescence imaging. The viability of B16 (3D) spheroids after treatment with SBA-NBDH and SBA-NBD-PD was evaluated using MTS assay. The results showed that both materials induced a selective antiproliferative effect, reducing to various degrees the viability of melanoma cells. The observed effect was enhanced with increasing concentration. SBA-NBD-PD exhibited a higher antitumor effect compared to SBA-NBDH starting with a concentration of 125 µg/mL. In both cases, a significantly more pronounced antiproliferative effect on tumor cells compared to normal cells was observed. The viability of B16 spheroids dropped by 40% after treatment with SBA-NBDH and SBA-NBD-PD at 500 µg/mL concentration, indicating a clear cytotoxic effect of the tested compounds. These results suggest that both newly synthesized biomaterials could be promising antitumor agents for applications in cancer therapy
    corecore