1 research outputs found

    SELF BROADENING COEFFICIENTS AND IMPROVED LINE INTENSITIES FOR THE v7 BAND OF C2H4 NEAR 10.5 µm, AND IMPACT ON ETHYLENE RETRIEVALS FROM JUNGFRAUJOCH SOLAR SPECTRA

    Full text link
    Relying on high-resolution Fourier transform infrared (FTIR) spectra, the present work involved extensive measurements of individual line intensities and self-broadening coefficients for the ν7 band of 12C2H4. The measured self-broadening coefficients exhibit a dependence on both J and Ka. Compared to the corresponding information available in the latest edition of the HITRAN spectroscopic database, the measured line intensities were found to be higher by about 10 % for high J lines in the P branch and lower by about 5 % for high J lines of the R branch, varying between these two limits roughly linearly with the line positions. The impact of the presently measured line intensities on retrievals of atmospheric ethylene in the 949.0–952.0cm 1 microwindow was evaluated using a subset of ground-based high-resolution FTIR solar spectra recorded at the Jungfraujoch station. The use of HITRAN 2012 with line intensities modified to match the present measurements led to a systematic reduction of the measured total columns of ethylene by -4.1 +/- 0.1 %
    corecore