87 research outputs found

    Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Get PDF
    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix

    Combining spectral induced polarization with x-ray tomography to investigate the importance of DNAPL geometry in sand samples

    Get PDF
    Whilst many studies have been performed to investigate the spectral induced polarization (SIP) response of Non-aqueous Phase Liquid (NAPL) contaminated soil samples there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions is needed. We use high-resolution x-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand containing different concentrations of tetrachloroethylene (PCE) and link this to SIP measurements on the same samples. The total concentration of the sample constituents as well as the volumes of the individual NAPL blobs were calculated and used for the interpretation of the associated SIP responses. The x-ray tomography and image analysis showed that the real sample properties (porosity and NAPL distributions) differed from the targeted ones. Both contaminated samples contained less NAPL than expected from the manual sample preparation. The SIP results showed higher real conductivity and lower imaginary conductivity in the contaminated samples compared to a clean sample. This is interpreted as an effect of increased surface conductivity along interconnected NAPL blobs and decreased surface areas in the samples due to NAPL blobs larger than and enclosing grains. We conclude that the combination of SIP, x-ray tomography and image analysis is a very promising approach to achieve a better understanding of the measured SIP responses of NAPL contaminated samples

    Timelapse ultrasonic tomography for measuring damage localization in geomechanics laboratory tests.

    Get PDF
    Variation of mechanical properties in materials can be detected non-destructively using ultrasonic measurements. In particular, changes in elastic wave velocity can occur due to damage, i.e., micro-cracking and particles debonding. Here the challenge of characterizing damage in geomaterials, i.e., rocks and soils, is addressed. Geomaterials are naturally heterogeneous media in which the deformation can localize, so that few measurements of acoustic velocity across the sample are not sufficient to capture the heterogeneities. Therefore, an ultrasonic tomography procedure has been implemented to map the spatial and temporal variations in propagation velocity, which provides information on the damage process. Moreover, double beamforming has been successfully applied to identify and isolate multiple arrivals that are caused by strong heterogeneities (natural or induced by the deformation process). The applicability of the developed experimental technique to laboratory geomechanics testing is illustrated using data acquired on a sample of natural rock before and after being deformed under triaxial compression. The approach is then validated and extended to time-lapse monitoring using data acquired during plane strain compression of a sample including a well defined layer with different mechanical properties than the matrix

    Fast 4D imaging of fluid flow in rock by high‐speed neutron tomography

    Get PDF
    High‐speed neutron tomographies (1‐min acquisition) have been acquired during water invasion into air‐filled samples of both intact and deformed (ex situ) Vosges sandstone. Three‐dimensional volume images have been processed to detect and track the evolution of the waterfront and to calculate full‐field measurement of its speed of advance. The flow process correlates well with known rock properties and is especially sensitive to the distribution of the altered properties associated with observed localized deformation, which is independently characterized by Digital Volume Correlation of X‐ray tomographies acquired before and after the mechanical test. The successful results presented herein open the possibility of in situ analysis of the local evolution of hydraulic properties of rocks due to mechanical deformation

    4D porosity evolution during pressure-solution of NaCl in the presence of phyllosilicates

    Get PDF
    Pressure-solution creep is one of the most common crustal deformation mechanisms, inducing changes in the porosity and permeability of rocks. For a variety of rock types undergoing pressure solution, it has been shown that the presence of phyllosilicates may significantly enhance the rate of the pressure-solution process. In this experimental investigation, we present 4-dimensional (three dimensions + time) X-ray microtomographic data that contrast deformation by pressure-solution of a pure NaCl aggregate with that of a mixture of NaCl and biotite. The results show that for mixed samples (NaCl+biotite), phyllosilicates induce a marked reduction in porosity and pore connectivity and contribute to an increase in the local strain rates by an order of magnitude over pure NaCl samples. At the same time, phyllosilicates do not induce strain localization in the sample. We discuss various possible explanations for these observations including a possible positive feedback between the porosity distribution and pressure solution. Our study yields novel insights into the local effects of phyllosilicates during pressure-solution creep and provides full 4-dimensional imaging and characterization of the coupled evolution of porosity and pore connectivity over previously unprecedented experimental time scales
    corecore