16,573 research outputs found

    Orbital Solutions and Absolute Elements of the Eclipsing Binary MY Cygni

    Get PDF
    Differential UBV photoelectric photometry for the eclipsing binary MY Cyg is presented. The Wilson-Devinney program is used to simultaneously solve the three light curves together with previously published radial velocities. A comparison is made with the previous solution found with the Russell-Merrill method. We examine the long-term apsidal motion of this well-detached, slightly eccentric system. We determine absolute dimensions, discuss metallicity/Am-star issues, and estimate the evolutionary status of the stars

    Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations

    Get PDF
    We analyze a new large-scale (100h−1100h^{-1}Mpc) numerical hydrodynamic simulation of the popular Λ\LambdaCDM cosmological model, including in our treatment dark matter, gas and star-formation, on the basis of standard physical processes. The method, applied with a numerical resolution of <200h−1<200h^{-1}kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the "bias" defined as b≡(δM/M)gal/(δM/M)totalb\equiv (\delta M/M)_{gal}/(\delta M/M)_{total} on scales large compared with the code numerical resolution (on the basis of resolution tests given in the appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity and with increasing redshift of observations. At the 8h−18h^{-1}Mpc fiducial comoving scale bias (for bright regions) is 1.35 at z=0z=0 reaching to 3.6 at z=3z=3, both numbers being consistent with extant observations. We also find that (10−20)h−1(10-20)h^{-1}Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against CDM-like models) and finally that the younger systems should show a colder Hubble flow than do the early type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of {\it comoving} separation). Testing this prediction vs observations will allow a comparison between this work and that of Kauffmann et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig

    Local u'g'r'i'z' Standard Stars in the Chandra Deep Field-South

    Full text link
    Because several observing programs are underway in various spectral regimes to explore the Chandra Deep Field South (CDF-S), the value of local photometric standards is obvious. As part of an NOAO Surveys Program to establish u'g'r'i'z' standard stars in the southern hemisphere, we have observed the central region of the CDF-S to create local standards for use by other investigators using these filters. As a courtesy, we present the CDF-S standards to the public now, although the main program will not finish until mid-2005.Comment: Accepted by AJ (scheduled for October 2003 issue). 26 pages, 5 tables, 5 figures. High resolution version of Figure 7 available at http://home.fnal.gov/~dtucker/Southern_ugriz/index.htm

    Stochastic Programming and Distributionally Robust Optimization Approaches for Location and Inventory Prepositioning of Disaster Relief Supplies

    Full text link
    In this paper, we study the problem of disaster relief inventory prepositioning under uncertainty. Specifically, we aim to determine where to open warehouses and how much relief item inventory to preposition in each, pre-disaster. During the post-disaster phase, prepositioned items are distributed to demand nodes, and additional items are procured and distributed as needed. There is uncertainty in the (1) disaster level, (2) locations of affected areas, (3) demand of relief items, (4) usable fraction of prepositioned items post-disaster, (5) procurement quantity, and (6) arc capacity. We propose and analyze two-stage stochastic programming (SP) and distributionally robust optimization (DRO) models, assuming known and unknown uncertainty distributions, respectively. The first and second stages correspond to pre- and post-disaster phases, respectively. We propose a Monte Carlo Optimization procedure to solve the SP and a decomposition algorithm to solve the DRO model. To illustrate potential applications of our approaches, we conduct extensive experiments using a hurricane season and an earthquake as case studies. Our results demonstrate the (1) the robustness and superior post-disaster operational performance of the DRO decisions under various distributions compared to SP decisions, especially under misspecified distributions and high variability, (2) the trade-off between considering distributional ambiguity and following distributional belief, and (3) computational efficiency of our approaches

    The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications

    Full text link
    Applications of the covariant theory of drive-forms are considered for a class of perfectly insulating media. The distinction between the notions of "classical photons" in homogeneous bounded and unbounded stationary media and in stationary unbounded magneto-electric media is pointed out in the context of the Abraham, Minkowski and symmetrized Minkowski electromagnetic stress-energy-momentum tensors. Such notions have led to intense debate about the role of these (and other) tensors in describing electromagnetic interactions in moving media. In order to address some of these issues for material subject to the Minkowski constitutive relations, the propagation of harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced slabs at rest is first considered. To motivate the subsequent analysis on accelerating media two classes of electromagnetic modes that solve Maxwell's equations for uniformly rotating homogeneous polarizable media are enumerated. Finally it is shown that, under the influence of an incident monochromatic, circularly polarized, plane electromagnetic wave, the Abraham and symmetrized Minkowski tensors induce different time-averaged torques on a uniformly rotating materially inhomogeneous dielectric cylinder. We suggest that this observation may offer new avenues to explore experimentally the covariant electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.
    • …
    corecore