9,669 research outputs found
The Electrodynamics of Inhomogeneous Rotating Media and the Abraham and Minkowski Tensors II: Applications
Applications of the covariant theory of drive-forms are considered for a
class of perfectly insulating media. The distinction between the notions of
"classical photons" in homogeneous bounded and unbounded stationary media and
in stationary unbounded magneto-electric media is pointed out in the context of
the Abraham, Minkowski and symmetrized Minkowski electromagnetic
stress-energy-momentum tensors. Such notions have led to intense debate about
the role of these (and other) tensors in describing electromagnetic
interactions in moving media. In order to address some of these issues for
material subject to the Minkowski constitutive relations, the propagation of
harmonic waves through homogeneous and inhomogeneous, isotropic plane-faced
slabs at rest is first considered. To motivate the subsequent analysis on
accelerating media two classes of electromagnetic modes that solve Maxwell's
equations for uniformly rotating homogeneous polarizable media are enumerated.
Finally it is shown that, under the influence of an incident monochromatic,
circularly polarized, plane electromagnetic wave, the Abraham and symmetrized
Minkowski tensors induce different time-averaged torques on a uniformly
rotating materially inhomogeneous dielectric cylinder. We suggest that this
observation may offer new avenues to explore experimentally the covariant
electrodynamics of more general accelerating media.Comment: 29 pages, 4 figures. Accepted for publication in Proc. Roy. Soc.
Maxwell's Equations in a Uniformly Rotating Dielectric Medium and the Wilson-Wilson Experiment
This note offers a conceptually straightforward and efficient way to
formulate and solve problems in the electromagnetics of moving media based on a
representation of Maxwell's equations in terms of differential forms on
spacetime together with junction conditions at moving interfaces. This
framework is used to address a number of issues that have been discussed
recently in this journal about the theoretical description underlying the
interpretation of the Wilson-Wilson experiment.Comment: 16 pages, 2 figure
Exploring the Phenomenon of Distance in Children\u27s Interactions with Touchscreen Digital Mathematics Games
This study examines the construct of distance – the degree of difficulty of interacting with something – as part of activity involving children using touchscreen digital games to learn mathematics. Ten fifth-grade children engaged in video-recorded semi-structured task-based interviews in which they used two touchscreen digital mathematics games on a touchscreen tablet and responded to semi-structured follow-up questions. Qualitative data analysis was iterative, featuring analytic memoing and eclectic coding techniques to identify themes related to distance. In advanced coding stages, magnitude coding was used to characterize the degree of distance present. Findings provide evidence of the presence of distance, changes in distance, and interactions between distance types throughout the activity. In particular, both mathematical distance and technological distance were present, changed in various ways, and often influenced each other. Implications include the relevance of distance for designing, implementing, and researching educational technology
The resonance spectrum of the cusp map in the space of analytic functions
We prove that the Frobenius--Perron operator of the cusp map
, (which is an approximation of the
Poincar\'e section of the Lorenz attractor) has no analytic eigenfunctions
corresponding to eigenvalues different from 0 and 1. We also prove that for any
the spectrum of in the Hardy space in the disk
\{z\in\C:|z-q|<1+q\} is the union of the segment and some finite or
countably infinite set of isolated eigenvalues of finite multiplicity.Comment: Submitted to JMP; The description of the spectrum in some Hardy
spaces is adde
The Environment of ``E+A'' Galaxies
The violent star formation history of ``E+A'' galaxies and their detection
almost exclusively in distant clusters is frequently used to link them to the
``Butcher-Oemler effect'' and to argue that cluster environment influences
galaxy evolution. From 11113 spectra in the Las Campanas Redshift Survey, we
have obtained a unique sample of 21 nearby ``E+A" galaxies. Surprisingly, a
large fraction (about 75%) of these ``E+A''s lie in the field. Therefore,
interactions with the cluster environment, in the form of the ICM or cluster
potential, are not essential for ``E+A'' formation. If one mechanism is
responsible for ``E+A''s, their existence in the field and the tidal features
in at least 5 of the 21 argue that galaxy-galaxy interactions and mergers are
that mechanism. The most likely environments for such interactions are poor
groups, which have lower velocity dispersions than clusters and higher galaxy
densities than the field. In hierarchical models, groups fall into clusters in
greater numbers at intermediate redshifts than they do today. Thus, the
Butcher-Oemler effect may reflect the typical evolution of galaxies in groups
and in the field rather than the influence of clusters on star formation in
galaxies. This abstract is abridged.Comment: 39 uuencoded, compressed pages (except Fig 1), complete preprint at
ftp://ociw.edu/pub/aiz/eplusa.ps, ApJ, submitte
Spin excitations in the skymion host Cu2OSeO3
We have used inelastic neutron scattering to measure the magnetic excitation
spectrum along the high-symmetry directions of the first Brillouin zone of the
magnetic skyrmion hosting compound CuOSeO. The majority of our
scattering data are consistent with the expectations of a recently proposed
model for the magnetic excitations in CuOSeO, and we report best-fit
parameters for the dominant exchange interactions. Important differences exist,
however, between our experimental findings and the model expectations. These
include the identification of two energy scales that likely arise due to
neglected anisotropic interactions. This feature of our work suggests that
anisotropy should be considered in future theoretical work aimed at the full
microscopic understanding of the emergence of the skyrmion state in this
material.Comment: 5 pages, 6 figure
On the Energy-Momentum Density of Gravitational Plane Waves
By embedding Einstein's original formulation of GR into a broader context we
show that a dynamic covariant description of gravitational stress-energy
emerges naturally from a variational principle. A tensor is constructed
from a contraction of the Bel tensor with a symmetric covariant second degree
tensor field and has a form analogous to the stress-energy tensor of the
Maxwell field in an arbitrary space-time. For plane-fronted gravitational waves
helicity-2 polarised (graviton) states can be identified carrying non-zero
energy and momentum.Comment: 10 pages, no figure
- …